A247846
Initial primes in the prime quadruplets generated by A247845.
Original entry on oeis.org
11, 3895757051, 31975161851, 68129352251, 175683369311, 188170293791, 255637427231, 767561723231, 1400284088891, 1888909389371, 2627368679051, 3908473644191
Offset: 1
11 is the lesser member of the prime quadruplet 5^2-2*5-4=11; 5^2-2*5-2=13; 5^2-2*5+2=17; and, 5^2-2*5+4=19.
A247882
Numbers, p, that generate the prime quadruplets p^2-2p+2k (for k = -2, -1, 1, 2).
Original entry on oeis.org
5, 15, 705, 2795, 14105, 18645, 38547, 43485, 53915, 57957, 62417, 76287, 82355, 94445, 96657, 145937, 162605, 178817, 180677, 184877, 193625, 234017, 238887, 256557, 261017, 287835, 297815, 334007, 339525, 346425, 387297, 399387, 407145, 417597, 418845, 419147
Offset: 1
5 is in the sequence as it generates the prime quadruplet 5^2-2*5-4=11; 5^2-2*5-2=13; 5^2-2*5+2=17; and, 5^2-2*5+4=19.
Cf.
A247845 (subsequence of primes).
-
filter:= p -> andmap(isprime, [p^2-2*p-4,p^2-2*p-2,p^2-2*p+2,p^2-2*p+4]):
select(filter, [seq(seq(10*i+j,j=[5,7]),i=0..10^6)]);
-
lista(nn) = {vk = [-2, -1, 1, 2]; for (p = 2, nn, nb = 0; for (k = 1, 4, nb += isprime(p^2-2*p+2*vk[k]);); if (nb == 4, print1(p, ", ")););} \\ Michel Marcus, Sep 26 2014
Showing 1-2 of 2 results.
Comments