A247851
The 6th Hermite Polynomial evaluated at n: H_6(n) = 64*n^6-480*n^4+720*n^2-120.
Original entry on oeis.org
-120, 184, -824, 14136, 150664, 717880, 2389704, 6412216, 14857096, 30921144, 59271880, 106439224, 181253256, 295328056, 463591624, 704861880, 1042468744, 1504922296, 2126627016, 2948642104, 4019487880, 5395998264, 7144219336, 9340353976, 12071752584
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Hermite Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Cf. similar sequences listed in
A247850.
-
[64*n^6-480*n^4+720*n^2-120: n in [0..30]];
-
I:=[-120,184,-824,14136,150664,717880,2389704]; [n le 7 select I[n] else 7*Self(n-1)-21*Self(n-2)+35*Self(n-3)-35*Self(n-4)+21*Self(n-5)-7*Self(n-6)+Self(n-7): n in [1..30]];
-
Table[64 n^6 - 480 n^4 + 720 n^2 - 120, {n, 0, 30}] (* or *) CoefficientList[Series[(-120 + 1024 x -4632 x^2 + 27968 x^3 + 23768 x^4 - 2112 x^5 + 184 x^6)/(1-x)^7, {x, 0, 30}], x]
LinearRecurrence[{7,-21,35,-35,21,-7,1},{-120,184,-824,14136,150664,717880,2389704},30] (* Harvey P. Dale, Apr 08 2019 *)
-
a(n)=polhermite(6,n) \\ Charles R Greathouse IV, Jan 29 2016
-
from sympy import hermite
def A247851(n): return hermite(6,n) # Chai Wah Wu, Jan 06 2022
A247852
The 7th Hermite Polynomial evaluated at n: H_7(n) = 128*n^7 -1344*n^5 + 3360*n^3 - 1680*n.
Original entry on oeis.org
0, 464, -3104, 39024, 929216, 6211600, 26096544, 83965616, 226102144, 535292496, 1148943200, 2282359024, 4257827136, 7540152464, 12779289376, 20860714800, 32964187904, 50631541456, 75844149984, 111110719856, 159566046400, 225081383184, 312387068576
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Hermite Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Cf. similar sequences listed in
A247850.
-
[128*n^7-1344*n^5+3360*n^3-1680*n: n in [0..30]];
-
I:=[0,464,-3104,39024,929216,6211600,26096544,83965616]; [n le 8 select I[n] else 8*Self(n-1)-28*Self(n-2)+56*Self(n-3)-70*Self(n-4)+56*Self(n-5)-28*Self(n-6)+8*Self(n-7)-Self(n-8): n in [1..30]];
-
Table[128 n^7 - 1344 n^5 + 3360 n^3 - 1680 n, {n, 0, 30}] (* or *) CoefficientList[Series[x (464 - 6816 x + 76848 x^2 + 504128 x^3 + 76848 x^4 - 6816 x^5 + 464 x^6)/(1-x)^8, {x, 0, 30}], x]
-
a(n)=polhermite(7,n) \\ Charles R Greathouse IV, Jan 29 2016
-
from sympy import hermite
def A247852(n): return hermite(7, n) # Chai Wah Wu, Jan 06 2022
A247853
The 8th Hermite Polynomial evaluated at n: H_8(n) = 256*n^8-3584*n^6+13440*n^4-13440*n^2+1680.
Original entry on oeis.org
1680, -1648, -880, 36240, 5324432, 52065680, 279702672, 1085747600, 3409634960, 9202368912, 22149057680, 48721749392, 99650305680, 191909371280, 351329819792, 615953377680, 1040259450512, 1700403497360, 2700616621200, 4180926365072, 6326369025680
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Hermite Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Cf. similar sequences listed in
A247850.
-
[256*n^8-3584*n^6+13440*n^4-13440*n^2+1680: n in [0..30]];
-
I:=[1680,-1648,-880,36240,5324432, 52065680,279702672,1085747600,3409634960]; [n le 9 select I[n] else 9*Self(n-1)-36*Self(n-2)+84*Self(n-3)-126*Self(n-4)+126*Self(n-5)-84*Self(n-6)+36*Self(n-7)-9*Self(n-8)+Self(n-9): n in [1..30]];
-
Table[256 n^8 - 3584 n^6 + 13440 n^4 - 13440 n^2 + 1680, {n, 0, 30}] (* or *) CoefficientList[Series[(1680 - 16768 x + 74432 x^2 - 156288 x^3 + 5316704 x^4 + 5105024 x^5 - 15168 x^6 + 13952 x^7 - 1648 x^8)/(1 - x)^9, {x, 0, 30}],x]
-
a(n)=polhermite(8,n) \\ Charles R Greathouse IV, Jan 29 2016
-
from sympy import hermite
def A247853(n): return hermite(8,n) # Chai Wah Wu, Jan 06 2022
A247854
The 9th Hermite Polynomial evaluated at n: H_9(n) = 512*n^9 - 9216*n^7 + 48384*n^5 - 80640*n^3 + 30240*n.
Original entry on oeis.org
0, -10720, 46144, -406944, 27728000, 421271200, 2938887360, 13857016544, 50936525056, 157077960480, 424598062400, 1035360742240, 2323482102144, 4869001213856, 9632766324160, 18144829893600, 32760875409920, 57003614246944, 96008691963456, 157097430355040
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Hermite Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Cf. similar sequences listed in
A247850.
-
Table[512 n^9 - 9216 n^7 + 48384 n^5 - 80640 n^3 + 30240 n, {n, 0, 30}]
-
a(n)=polhermite(9,n) \\ Charles R Greathouse IV, Jan 29 2016
-
from sympy import hermite
def A247854(n): return hermite(9,n) # Chai Wah Wu, Jan 06 2022
A247855
The 10th Hermite Polynomial evaluated at n: H_10(n) = 1024*n^10 - 23040*n^8 + 161280*n^6 - 403200*n^4 + 302400*n^2 - 30240.
Original entry on oeis.org
-30240, 8224, 200416, -3093984, 125984224, 3275529760, 30232000224, 174454774816, 753610971616, 2661760648224, 8093278209760, 21900944840224, 53969864949216, 123139662877216, 263393520320224, 533257736009760, 1029623343008224, 1907515621443616
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Hermite Polynomial
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1)
Cf. similar sequences listed in
A247850.
-
[1024*n^10-23040*n^8+161280*n^6-403200*n^4 +302400*n^2-30240: n in [0..30]];
-
I:=[-30240, 8224,200416,-3093984,125984224,3275529760,30232000224, 174454774816,753610971616,2661760648224,8093278209760]; [n le 11 select I[n] else 11*Self(n-1)-55*Self(n-2)+165*Self(n-3)-330*Self(n-4)+462*Self(n-5)-462*Self(n-6)+330*Self(n-7)-165*Self(n-8)+55*Self(n-9)-11*Self(n-10)+Self(n-11): n in [1..30]];
-
Table[1024 n^10 - 23040 n^8 + 161280 n^6 - 403200 n^4 + 302400 n^2 - 30240, {n, 0, 30}] (* or *) CoefficientList[Series[(-30240 + 340864 x - 1553248 x^2 + 143360 x^3 + 159704768 x^4 + 1703150336 x^5 + 1689179456 x^6 + 169683968 x^7 - 4846240 x^8 + 109952 x^9 + 8224 x^10)/(1-x)^11, {x, 0, 30}], x]
-
a(n)=polhermite(10,n) \\ Charles R Greathouse IV, Jan 29 2016
-
m = [3715891200, -16721510400, 30036787200, -27095040000, 12533391360, -2612736000, 139499520, 3640320, 153728, -38464, -30240]
A247855_list = [m[-1]]
for _ in range(10**1):
for i in range(10):
m[i+1]+= m[i]
A247855_list.append(m[-1]) # Chai Wah Wu, Nov 09 2014
Showing 1-5 of 5 results.