cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247867 a(n) is the smallest prime in the interval [k*sqrt(k), k*sqrt(k+2)], where k = A001359(n), or a(n)=0 if there is no prime in this interval.

Original entry on oeis.org

0, 13, 37, 71, 157, 263, 457, 599, 1019, 1109, 1607, 1823, 2399, 2647, 2767, 3433, 3697, 4421, 4721, 5501, 6469, 8581, 8951, 9901, 11897, 13577, 14669, 15329, 16229, 16921, 23011, 23531, 23789, 25097, 26153, 32531, 33107, 33997, 34583, 36037, 39079, 43093
Offset: 1

Views

Author

Vladimir Shevelev, Sep 25 2014

Keywords

Comments

The sequence is partly connected with conjecture in A247834. In turn, we conjecture that all terms a(n)>0 for n>1.

Examples

			For n=1, k=A001359(1)=3, we have the interval [3*sqrt(3), 3*sqrt(5)] = [5.1...,6.7...] which does not contain a prime. So, a(1)=0.
For n=2, k=5, we have the interval [5*sqrt(5), 5*sqrt(7)] = [11.1..., 13.2...] which contains only one prime: 13. So, a(2)=13.
		

Crossrefs

Programs

  • Maple
    p:= 1: q:= 2: count:= 0:
    while count < 100 do
      if q = p+2 then
        count:= count+1;
        r:= nextprime(floor(p*sqrt(p)));
        if r^2 < p^2*q then A[count]:= r
        else A[count]:= 0 fi;
      fi;
      p:= q; q:= nextprime(p);
    od:
    seq(A[i],i=1..100); # Robert Israel, Apr 08 2018
  • PARI
    lista(nn) = {forprime(p=2, nn, if (isprime(q=p+2), pmin = nextprime(ceil(p*sqrt(p))); if (pmin <= floor(p*sqrt(q)), val = pmin, val = 0); print1(val, ", ");););} \\ Michel Marcus, Sep 25 2014

Extensions

More terms from Michel Marcus, Sep 25 2014