A247874 Lesser of twin primes (p, q=p+2) such that 7 is a square mod p and mod q.
29, 137, 197, 281, 419, 617, 641, 809, 1061, 1091, 1229, 1289, 1427, 1481, 1877, 1931, 2129, 2237, 2267, 2381, 2549, 2657, 2687, 2801, 2969, 3329, 3359, 3389, 3527, 3557, 3581, 3917, 4001, 4229, 4337, 4421, 4481, 4649, 4787, 5009, 5657, 5741, 5849, 5879, 6131, 6269, 6299, 6551, 6689, 7307
Offset: 1
Keywords
Examples
7+29*1=36=6^2 and 7+31*3=100=10^2 hence 7 is a square mod 29 and mod 31.
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Prime[Range[5,1000]], PrimeQ[# + 2] && JacobiSymbol[7, #] == JacobiSymbol[7, # + 2] == 1 &]
-
PARI
lista(nn) = {forprime(p=2, nn, if (isprime(q=p+2) && issquare(Mod(7, p)) && issquare(Mod(7, q)), print1(p, ", ")););} \\ Michel Marcus, Sep 25 2014
Comments