A247882 Numbers, p, that generate the prime quadruplets p^2-2p+2k (for k = -2, -1, 1, 2).
5, 15, 705, 2795, 14105, 18645, 38547, 43485, 53915, 57957, 62417, 76287, 82355, 94445, 96657, 145937, 162605, 178817, 180677, 184877, 193625, 234017, 238887, 256557, 261017, 287835, 297815, 334007, 339525, 346425, 387297, 399387, 407145, 417597, 418845, 419147
Offset: 1
Keywords
Examples
5 is in the sequence as it generates the prime quadruplet 5^2-2*5-4=11; 5^2-2*5-2=13; 5^2-2*5+2=17; and, 5^2-2*5+4=19.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A247845 (subsequence of primes).
Programs
-
Maple
filter:= p -> andmap(isprime, [p^2-2*p-4,p^2-2*p-2,p^2-2*p+2,p^2-2*p+4]): select(filter, [seq(seq(10*i+j,j=[5,7]),i=0..10^6)]);
-
PARI
lista(nn) = {vk = [-2, -1, 1, 2]; for (p = 2, nn, nb = 0; for (k = 1, 4, nb += isprime(p^2-2*p+2*vk[k]);); if (nb == 4, print1(p, ", ")););} \\ Michel Marcus, Sep 26 2014
Extensions
More terms from Michel Marcus, Sep 26 2014
Comments