cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247935 Number of integer partitions of n whose distinct parts have no binary carries.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 10, 11, 14, 18, 21, 26, 30, 38, 49, 47, 55, 66, 74, 84, 96, 110, 126, 134, 151, 171, 195, 209, 235, 272, 318, 307, 349, 377, 422, 448, 491, 534, 595, 617, 674, 734, 801, 841, 925, 998, 1098, 1118, 1219, 1299, 1418, 1476, 1591, 1711, 1865
Offset: 0

Views

Author

David S. Newman, Sep 26 2014

Keywords

Comments

From Gus Wiseman, Mar 31 2019: (Start)
A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. For example, the reversed binary expansions of 2, 5, and 8 are
{0,1}
{1,0,1}
{0,0,0,1}
and since there are no columns with more than one 1, the partition (8,5,2) is counted under a(15). The Heinz numbers of these partitions are given by A325097.
(End)

Examples

			From _Gus Wiseman_, Mar 30 2019: (Start)
The a(1) = 1 through a(8) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (41)     (33)      (43)       (44)
             (111)  (211)   (221)    (42)      (52)       (422)
                    (1111)  (2111)   (222)     (61)       (611)
                            (11111)  (411)     (421)      (2222)
                                     (2211)    (2221)     (4211)
                                     (21111)   (4111)     (22211)
                                     (111111)  (22111)    (41111)
                                               (211111)   (221111)
                                               (1111111)  (2111111)
                                                          (11111111)
(End)
		

Crossrefs

Programs

  • Maple
    with(Bits):
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, t) +`if`(i>n or And(t, i)>0, 0,
          add(b(n-i*j, i-1, Or(t, i)), j=1..n/i))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Dec 28 2014
  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],stableQ[#,Intersection[binpos[#1],binpos[#2]]!={}&]&]],{n,0,20}] (* Gus Wiseman, Mar 30 2019 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, t] + If[i > n || BitAnd[t, i] > 0, 0, Sum[b[n - i*j, i - 1, BitOr[t, i]], {j, 1, n/i}]]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 80] (* Jean-François Alcover, May 23 2021, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Oct 15 2014
Name edited by Gus Wiseman, Mar 31 2019