cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A274948 Irregular triangle read by rows: T(n,k) (n>=1, 0 <= k <= n^2) = maximal number of squares not attacked by any arrangement of k queens on an n X n board = n^2 - A274947(n,k).

Original entry on oeis.org

1, 0, 4, 0, 0, 0, 0, 9, 2, 1, 0, 0, 0, 0, 0, 0, 0, 16, 6, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 12, 7, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jul 27 2016

Keywords

Comments

For further information see A274947, which is the main entry for this problem.

Examples

			The triangle begins:
1, 0,
4, 0, 0, 0, 0,
9, 2, 1, 0, 0, 0, 0, 0, 0, 0,
16, 6, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
25, 12, 7, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
36, 20, 13, 9, 8, 6, 5, 4, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
...
		

Crossrefs

Extensions

Corrections and more terms from Andrey Zabolotskiy, Jul 29 2016

A247948 Five-digit odd semiprimes with all digits distinct.

Original entry on oeis.org

10237, 10239, 10249, 10265, 10279, 10297, 10327, 10345, 10347, 10349, 10367, 10379, 10389, 10397, 10423, 10435, 10473, 10483, 10489, 10493, 10495, 10497, 10523, 10537, 10543, 10547, 10573, 10579, 10583, 10587, 10623, 10637, 10643, 10645, 10649
Offset: 1

Views

Author

K. D. Bajpai, Sep 27 2014

Keywords

Comments

There are exactly 4858 five-digit odd semiprimes with all digits distinct. The last few terms of the sequence are: 98501, 98503, 98517, 98521, 98531, 98537, 98567, 98603, 98607, 98617, 98635, 98647, 98653, 98657, 98671, 98701, 98723, 98741, 98743, 98751, 98765.
See the link with the b-file for all 4858 entries.

Examples

			a(1) = 10237 = 29 * 353 is the smallest five-digit odd semiprime with all digits distinct.
a(4858) = 98765 = 5 * 19753 is the largest five-digit odd semiprime with all digits distinct.
		

Crossrefs

Programs

  • Mathematica
    c = 0; Do[If[Length[Union[IntegerDigits[n]]] == 5 && PrimeOmega[n] == 2, c++; Print[c, "  ", n]], {n, 10001, 99999, 2}]
Showing 1-2 of 2 results.