cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247949 Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields only primes for k = 0...5.

Original entry on oeis.org

7, 43, 79, 457, 877, 967, 1093, 2437, 2683, 3187, 5077, 5923, 7933, 8233, 11923, 12889, 15787, 17389, 19993, 31543, 41113, 41617, 42457, 71359, 77863, 80683, 91393, 101719, 102643, 105967, 107347, 120163, 129733, 137593, 151783, 170263, 175723, 197569, 210127
Offset: 1

Views

Author

K. D. Bajpai, Jan 11 2015

Keywords

Comments

All terms == 1 mod 6. - Robert Israel, Jan 11 2015

Examples

			a(1) = 7:
0^4 + 0^3 + 0^2 + 0 + 7 = 7;
1^4 + 1^3 + 1^2 + 1 + 7 = 11;
2^4 + 2^3 + 2^2 + 2 + 7 = 37;
3^4 + 3^3 + 3^2 + 3 + 7 = 127;
4^4 + 4^3 + 4^2 + 4 + 7 = 347;
5^4 + 5^3 + 5^2 + 5 + 7 = 787;
all six are primes.
		

Crossrefs

Programs

  • Maple
    select(p -> andmap(isprime, [p, p+4, p+30, p+120, p+340, p+780]), [seq(6*i+1, i=1..10^5)]); # Robert Israel, Jan 11 2015
  • Mathematica
    Select[f=k^4 + k^3 + k^2 + k; k = {0, 1, 2, 3, 4, 5}; Prime[Range[2000000]], And @@ PrimeQ[#+f] &]
    Select[Prime[Range[20000]],AllTrue[#+{4,30,120,340,780},PrimeQ]&] (* Harvey P. Dale, Dec 24 2023 *)
  • PARI
    forprime(p=1, 500000, if( isprime(p+0)& isprime(p+4)& isprime(p+30)& isprime(p+120)& isprime(p+340)& isprime(p+780), print1(p,", ")))