A247965 a(n) is the smallest number k such that m*k^2+1 is prime for all m = 1 to n.
1, 1, 6, 3240, 113730, 30473520, 3776600100, 16341921960, 3332396388090
Offset: 1
Examples
a(3)=6 because 6^2+1 = 37, 2*6^2+1 = 73 and 3*6^2+1 = 109 are prime numbers. The resulting primes begin like this: 2; 2, 3; 37, 73, 109; 10497601, 20995201, 31492801, 41990401; ... - _Michel Marcus_, Sep 29 2014
Programs
-
Maple
for n from 1 to 6 do: ii:=0: for k from 1 to 10^10 while(ii=0) do: ind:=0: for m from 1 to n do: p:=m*k^2+1: if type(p,prime) then ind:=ind+1: fi: od: if ind=n then ii:=1:printf ( "%d %d \n",n,k): fi: od: od:
-
PARI
a(n)=k=1;while(k,c=0;for(i=1,n,if(!ispseudoprime(i*k^2+1),c++;break));if(!c,return(k));if(c,k++)) n=1;while(n<10,print1(a(n),", ");n++) \\ Derek Orr, Sep 28 2014
Extensions
a(7)-a(9) from Hiroaki Yamanouchi, Oct 01 2014
Comments