cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247966 Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields only primes for k = 0...6.

Original entry on oeis.org

43, 457, 967, 1093, 5923, 8233, 11923, 15787, 41113, 80683, 151783, 210127, 213943, 294919, 392737, 430879, 495559, 524827, 537007, 572629, 584557, 711727, 730633, 731593, 1097293, 1123879, 1138363, 1149163, 1396207, 1601503, 1739557, 1824139, 2198407, 2223853
Offset: 1

Views

Author

K. D. Bajpai, Jan 11 2015

Keywords

Examples

			a(1) = 43:
0^4 + 0^3 + 0^2 + 0 + 43 = 43;
1^4 + 1^3 + 1^2 + 1 + 43 = 47;
2^4 + 2^3 + 2^2 + 2 + 43 = 73;
3^4 + 3^3 + 3^2 + 3 + 43 = 163;
4^4 + 4^3 + 4^2 + 4 + 43 = 383;
5^4 + 5^3 + 5^2 + 5 + 43 = 823;
6^4 + 6^3 + 6^2 + 6 + 43 = 1597;
all seven are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[f=k^4 + k^3 + k^2 + k; k = {0, 1, 2, 3, 4, 5, 6}; Prime[Range[2000000]], And @@ PrimeQ[#+f] &]
    Select[Prime[Range[200000]],AllTrue[#+{4,30,120,340,780,1554},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 10 2017 *)
  • PARI
    forprime(p=1, 1e6, if( isprime(p+0)& isprime(p+4)& isprime(p+30)& isprime(p+120)& isprime(p+340)& isprime(p+780)&  isprime(p+1554), print1(p,", ")))