cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248004 Least positive integer m with prime(m*n) == 1 (mod m+n).

Original entry on oeis.org

3, 4, 1, 2, 2, 15, 1, 1, 5, 10, 2, 3, 4, 18, 6, 27, 4, 7, 35, 4, 45, 2, 47, 9, 5, 10, 16, 11, 3, 3, 9, 61, 1, 52, 3, 60, 53, 74, 8, 47, 7, 60, 128, 5, 21, 12, 2, 29, 15, 127, 53, 28, 17, 21, 303, 80, 72, 8, 61, 36
Offset: 1

Views

Author

Zhi-Wei Sun, Sep 29 2014

Keywords

Comments

Conjecture: (i) a(n) exists for any n > 0. Moreover, a(n) does not exceed n*(n-1)/2 if n > 2.
(ii) For each positive integer n, there is an integer m > 0 with prime(m*n) == -1 (mod m+n). Moreover, we may require that m does not exceed n*(n-1)/2 if n > 2.

Examples

			a(2) = 4 since prime(2*4) = 19 is congruent to 1 modulo 2 + 4 = 6.
a(5146) = 593626 since prime(5146*593626) = prime(3054799396) = 73226821741 is congruent to 1 modulo 5146 + 593626 = 598772.
		

Crossrefs

Programs

  • Mathematica
    Do[m=1;Label[aa];If[Mod[Prime[m*n],m+n]==1,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}]
    lpim[n_]:=Module[{m=1},While[Mod[Prime[m*n],m+n]!=1,m++];m]; Array[lpim,60] (* Harvey P. Dale, Oct 01 2017 *)