cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248161 Expansion of (2-x+x^2)/((1+x)*(1-3*x+x^2)).

Original entry on oeis.org

2, 3, 11, 26, 71, 183, 482, 1259, 3299, 8634, 22607, 59183, 154946, 405651, 1062011, 2780378, 7279127, 19056999, 49891874, 130618619, 341963987, 895273338, 2343856031, 6136294751, 16065028226, 42058789923, 110111341547
Offset: 0

Views

Author

Wolfdieter Lang, Nov 01 2014

Keywords

Comments

The negative of this sequence provides the first component of the square of [F(n), F(n+1), F(n+2), F(n+3)], for n >= 0, where F(n) = A000045(n), in the Clifford algebra Cl_2 over Euclidean 2-space. The whole quartet of sequences for this square is [-a(n), A079472(n+1), A059929(n), A121801(n+1)]. See the Oct 15 2014 comment in A147973 where also a reference is given.

Crossrefs

Programs

  • Magma
    [-(Fibonacci(n)^2 +Fibonacci(n+1)^2 + Fibonacci(n+2)^2 - Fibonacci(n+3)^2): n in [0..30]]; // Vincenzo Librandi, Nov 01 2014
    
  • Mathematica
    CoefficientList[Series[(2 - x + x^2)/((1 + x) (1 - 3 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Nov 01 2014 *)
    With[{F=Fibonacci}, Table[F[2*n+2] +F[n]*F[n+1] +(-1)^n, {n,0,40}]] (* G. C. Greubel, May 30 2025 *)
  • SageMath
    def A248161(n): return fibonacci(2*n+2) +fibonacci(n)*fibonacci(n+1) +(-1)^n
    print([A248161(n) for n in range(41)]) # G. C. Greubel, May 30 2025

Formula

a(n) = F(n+3)^2 - (F(n)^2 + F(n+1)^2 + F(n+2)^2), F(n) = A000045(n).
a(n) = (6*F(2*n+2) + F(2*n) + 4*(-1)^n)/5, with the Fibonacci numbers F = A000045.
O.g.f.: (2-x+x^2)/((1+x)*(1-3*x+x^2)) = (4/(1+x) + (x+6)/(1-3*x+x^2))/5.
From G. C. Greubel, May 30 2025: (Start)
a(n) = Fibonacci(2*n+2) + Fibonacci(n)*Fibonacci(n+1) + (-1)^n.
E.g.f.: (1/5)*(exp(3*x/2)*(6*cosh(sqrt(5)*x/2) + 4*sqrt(5)*sinh(sqrt(5)*x/2)) + 4*exp(-x)). (End)

Extensions

Typo in formula fixed by Vincenzo Librandi, Nov 01 2014