A248174 2-adic order of the tribonacci sequence.
0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 3, 0, 0, 6, 3, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 4, 0, 0, 6, 4, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 3, 0, 0, 7, 3, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 5, 0, 0, 7, 5, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 3, 0, 0, 6, 3, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 4, 0, 0, 6, 4, 0, 0, 1, 2, 0, 0, 3, 2
Offset: 1
Keywords
Examples
For n = 7 we have T_7 = A000073(8) = 24 and the highest power of 2 dividing T_7 is 8 = 2^3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Diego Marques and Tamás Lengyel, The 2-adic order of the Tribonacci numbers and the equation T_n = m!, Journal of Integer Sequences, Vol. 17 (2014), Article 14.10.1.
Programs
-
Maple
b:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n. <<0, 1, 1>>)[1, 1]: a:= n-> padic[ordp](b(n), 2): seq(a(n), n=1..120); # Alois P. Heinz, Oct 03 2014
-
Mathematica
IntegerExponent[LinearRecurrence[{1, 1, 1}, {1, 1, 2}, 100], 2] (* Amiram Eldar, Jan 29 2021 *)
Formula
From Amiram Eldar, Jan 29 2021: (Start)
The following 7 formulas completely specify the sequence (Marques and Lengyel, 2014):
1. a(n) = 0 if n == 1 (mod 4) or n == 2 (mod 4).
2. a(n) = 1 if n == 3 (mod 16) or n == 11 (mod 16).
3. a(n) = 2 if n == 4 (mod 16) or n == 8 (mod 16).
4. a(n) = 3 if n == 7 (mod 16).
5. a(n) = A007814(n) - 1 if n == 0 (mod 16).
6. a(n) = A007814(n+4) - 1 if n == 12 (mod 16).
7. a(n) = A007814((n+1)*(n+17)) - 3 if n == 15 (mod 16).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = 3/2. (End)