cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248174 2-adic order of the tribonacci sequence.

Original entry on oeis.org

0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 3, 0, 0, 6, 3, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 4, 0, 0, 6, 4, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 3, 0, 0, 7, 3, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 5, 0, 0, 7, 5, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 3, 0, 0, 6, 3, 0, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 4, 0, 0, 6, 4, 0, 0, 1, 2, 0, 0, 3, 2
Offset: 1

Views

Author

Jeffrey Shallit, Oct 03 2014

Keywords

Examples

			For n = 7 we have T_7 = A000073(8) = 24 and the highest power of 2 dividing T_7 is 8 = 2^3.
		

Crossrefs

Programs

  • Maple
    b:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n. <<0, 1, 1>>)[1, 1]:
    a:= n-> padic[ordp](b(n), 2):
    seq(a(n), n=1..120);  # Alois P. Heinz, Oct 03 2014
  • Mathematica
    IntegerExponent[LinearRecurrence[{1, 1, 1}, {1, 1, 2}, 100], 2] (* Amiram Eldar, Jan 29 2021 *)

Formula

a(n) = A007814(A000073(n+1)). - Michel Marcus, Oct 03 2014
From Amiram Eldar, Jan 29 2021: (Start)
The following 7 formulas completely specify the sequence (Marques and Lengyel, 2014):
1. a(n) = 0 if n == 1 (mod 4) or n == 2 (mod 4).
2. a(n) = 1 if n == 3 (mod 16) or n == 11 (mod 16).
3. a(n) = 2 if n == 4 (mod 16) or n == 8 (mod 16).
4. a(n) = 3 if n == 7 (mod 16).
5. a(n) = A007814(n) - 1 if n == 0 (mod 16).
6. a(n) = A007814(n+4) - 1 if n == 12 (mod 16).
7. a(n) = A007814((n+1)*(n+17)) - 3 if n == 15 (mod 16).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = 3/2. (End)