A248199 Initial primes of sets of 8 consecutive primes all different by modulo 30.
2, 3, 5, 7, 11, 13, 17, 19, 47, 499, 673, 677, 769, 1277, 1279, 1327, 1697, 2357, 3163, 3907, 4057, 4133, 4909, 5479, 5669, 6047, 7283, 9349, 9533, 9539, 9547, 9923, 10667, 11149, 11159, 12277, 12841, 17167, 17431, 17443, 21101, 21379, 22549, 22567, 22993, 24181, 24337, 24659, 24671, 25219, 26161
Offset: 1
Keywords
Examples
47 is a term because 8 consecutive primes {47, 53, 59, 61, 67, 71, 73, 79} are congruent to {17, 23, 29, 1, 7, 11, 13, 19} mod 30; all distinct by modulo 30.
Links
- Zak Seidov, Table of n, a(n) for n = 1..7000
- A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
Crossrefs
Cf. A095959 (primes modulo 30).
Programs
-
PARI
isok(n) = {v = []; for (i=0, 7, pm = prime(i+n) % 30; if (! vecsearch(v, pm), v = vecsort(concat(v, pm)), return (0));); return (1);} lista(nn) = {forprime(p=2, nn, if (isok(primepi(p)), print1(p, ", ")););} \\ Michel Marcus, Oct 06 2014