cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248332 Square array read by antidiagonals downwards: super Patalan numbers of order 8.

Original entry on oeis.org

1, 8, 56, 288, 224, 3360, 13056, 5376, 8960, 206080, 652800, 182784, 161280, 412160, 12776960, 34467840, 7311360, 4386816, 5935104, 20443136, 797282304, 1884241920, 321699840, 146227200, 134529024, 245317632, 1063043072, 49963024384, 105517547520, 15073935360, 5514854400, 3843686400
Offset: 0

Views

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers, A068555, based on Patalan numbers of order 8, A025753.

Examples

			T(0..4,0..4) is
  1           8           288         13056       652800
  56          224         5376        182784      7311360
  3360        8960        161280      4386816     146227200
  206080      412160      5935104     134529024   3843686400
  12776960    20443136    245317632   4766171136  119154278400
		

Crossrefs

Cf. A068555, A025753, A034977 (first row), A216704 (first column), A248324, A248325, A248326, A248328, A248329.

Programs

  • PARI
    matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*64^(n+k)*binomial(n-1/8,n+k)) \\ Michel Marcus, Oct 09 2014

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(64*n-8)/(n+k), T(n,k) = T(n,k-1)*(64*k-56)/(n+k).
G.f.: (x/(1-64*x)^(7/8)+y/(1-64*y)^(1/8))/(x+y-64*x*y).
T(n,k) = (-1)^k*64^(n+k)*binomial(n-1/8,n+k).