A248339 a(n) = 22*n + 19.
19, 41, 63, 85, 107, 129, 151, 173, 195, 217, 239, 261, 283, 305, 327, 349, 371, 393, 415, 437, 459, 481, 503, 525, 547, 569, 591, 613, 635, 657, 679, 701, 723, 745, 767, 789, 811, 833, 855, 877, 899, 921, 943, 965, 987, 1009
Offset: 0
Examples
For n = 4, 22*4 + 19 = 107.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
[22*n+19: n in [0..60]]; // G. C. Greubel, Nov 13 2024
-
Mathematica
22*Range[0,50]+19 (* or *) LinearRecurrence[{2,-1},{19,41},50] (* Harvey P. Dale, Dec 20 2014 *)
-
PARI
Vec((3*x+19)/(x-1)^2 + O(x^100)) \\ Colin Barker, Oct 05 2014
-
Python
for n in range(101): print(22*n+19,end=', ')
Formula
a(n) = 22*n + 19.
From Colin Barker, Oct 05 2014: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (19 + 3*x) / (1-x)^2. (End)
E.g.f.: (19 + 22*x)*exp(x). - G. C. Greubel, Nov 13 2024
Comments