cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248355 Least k such that Pi - k*sin(Pi/k) < 1/(2n).

Original entry on oeis.org

4, 5, 6, 7, 8, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2014

Keywords

Comments

For n > 1, let arch(n) = n*sin(Pi/n) be the Archimedean approximation to Pi (Finch, pp. 17 and 23) given by a regular polygon of n+1 sides. A248355 provides insight into the manner of convergence of arch(n) to Pi. (For the closely related function Arch, see A248347.)

Examples

			Approximations are shown here:
n    Pi - arch(n)      1/(2n)
1     3.14159...        0.5
2     1.14159...        0.25
3     0.543516...       0.16667
4     0.313166...       0.125
5     0.202666...       0.1
6     0.141593...       0.08333
7     0.105506...       0.07143
8     0.0801252...      0.0625
a(5) = 8 because Pi - arch(8) < 1/10 < Pi - arch(7).
		

Crossrefs

Programs

  • Mathematica
    z = 200; p[k_] := p[k] = k*Sin[Pi/k]; N[Table[Pi - p[n], {n, 1, z/10}]]
    f[n_] := f[n] = Select[Range[z], Pi - p[#] < 1/(2 n) &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]        (* A248355 *)
    v = Flatten[Position[Differences[u], 0]]   (* A248356 *)
    w = Flatten[Position[Differences[u], 1]]   (* A248357 *)
    f = Table[Floor[1/(Pi - p[n])], {n, 1, z}] (* A248358 *)

Formula

a(n) ~ Pi*sqrt(Pi*n/3). - Vaclav Kotesovec, Oct 09 2014

A248357 Numbers k such that A248355(k+1) = A248355(k) + 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 11, 13, 16, 19, 21, 24, 28, 31, 34, 38, 42, 46, 51, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 111, 118, 125, 132, 139, 147, 154, 162, 170, 178, 187, 195
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2014

Keywords

Comments

The difference sequence of A248355 is (1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1,...), so that A248356 = (5, 8, 10, 12, 14, 15, ...) and A248357 = (1, 2, 3, 4, 6, 7, 9, 11, 13, 16, 19,...); A248356 and A248357 are a complementary pair.

Crossrefs

Programs

  • Mathematica
    z = 200; p[k_] := p[k] = k*Sin[Pi/k]; N[Table[Pi - p[n], {n, 1, z/10}]]
    f[n_] := f[n] = Select[Range[z], Pi - p[#] < 1/(2 n) &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]        (* A248355 *)
    v = Flatten[Position[Differences[u], 0]]   (* A248356 *)
    w = Flatten[Position[Differences[u], 1]]   (* A248357 *)
    f = Table[Floor[1/(Pi - p[n])], {n, 1, z}] (* A248358 *)

A248358 Floor(1/(Pi - n*sin(Pi/n))).

Original entry on oeis.org

0, 0, 1, 3, 4, 7, 9, 12, 15, 19, 23, 27, 32, 38, 43, 49, 56, 62, 69, 77, 85, 93, 102, 111, 121, 130, 141, 151, 162, 174, 186, 198, 210, 223, 237, 250, 265, 279, 294, 309, 325, 341, 357, 374, 391, 409, 427, 445, 464, 483, 503, 523, 543, 564, 585, 606, 628
Offset: 1

Views

Author

Clark Kimberling, Oct 05 2014

Keywords

Comments

For n > 1, let arch(n) = n*sin(Pi/n) be the Archimedean approximation to Pi (Finch, pp. 17 and 23) given by a regular polygon of n+1 sides. A248358 and A248355 provide insight into the manner of convergence of arch(n) to Pi. (For the closely related function Arch, see A248347.)
See A248578 for the similar sequence round(1/(Pi-n*sin(Pi/n))). - M. F. Hasler, Oct 08 2014

Examples

			n    Pi - arch(n)    1/(Pi - arch(n))
1     3.14159...       0.3183...
2     1.14159...       0.8759...
3     0.54351...       1.8398...
4     0.31316...       3.1932...
5     0.20266...       4.9342...
6     0.14159...       7.0625...
		

Crossrefs

Programs

  • Mathematica
    z = 200; p[k_] := p[k] = k*Sin[Pi/k]; N[Table[Pi - p[n], {n, 1, z/10}]]
    f[n_] := f[n] = Select[Range[z], Pi - p[#] < 1/(2 n) &, 1]
    u = Flatten[Table[f[n], {n, 1, z}]]        (* A248355 *)
    v = Flatten[Position[Differences[u], 0]]   (* A248356 *)
    w = Flatten[Position[Differences[u], 1]]   (* A248357 *)
    f = Table[Floor[1/(Pi - p[n])], {n, 1, z}] (* A248358 *)
  • PARI
    a(n)=1\(Pi-n*sin(Pi/n)) \\ M. F. Hasler, Oct 08 2014

Formula

a(n) ~ 6*n^2/Pi^3. - Vaclav Kotesovec, Oct 09 2014
Showing 1-3 of 3 results.