A248367 Initial members of prime quadruples (n, n+2, n+36, n+38).
5, 71, 101, 191, 311, 821, 1451, 4091, 4481, 4931, 5441, 6791, 12071, 13721, 14591, 17921, 18251, 20441, 20771, 20981, 21521, 21611, 35801, 38711, 41141, 41981, 43541, 46271, 47351, 47741, 48821, 49331, 53231, 64151, 70841
Offset: 1
Keywords
Examples
For n=71, the numbers 71, 73, 107, 109, are primes.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..100000
- Eric Weisstein's World of Mathematics, Prime Quadruplet.
- Eric Weisstein's World of Mathematics, Twin Primes
- Wikipedia, Twin prime
Programs
-
Mathematica
a248367[n_] := Select[Prime@Range@n, And[PrimeQ[# + 2], PrimeQ[# + 36], PrimeQ[# + 38]] &]; a248367[8000] (* Michael De Vlieger, Jan 11 2015 *) Select[Prime[Range[8000]],AllTrue[#+{2,36,38},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 17 2019 *)
-
Python
from sympy import isprime for n in range(1,10000001,2): if isprime(n) and isprime(n+2) and isprime(n+36) and isprime(n+38): print(n,end=', ')
Comments