A248394 q-Expansion of the modular form of weight 3/2, g*theta(2) in Tunnell's notation (see Comments).
0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, -2, 0, 0, 0, 0, 0, -4, 0, -2, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 4, 0, -2
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
Crossrefs
Programs
-
Maple
# This produces a list of the first 100 terms: g:=q*mul((1-q^(8*m))*(1-q^(16*m)),m=1..30); g:=series(g,q,100); th:=t->series( add(q^(t*n^2),n=-50..50), q, 100); series(g*th(2),q,100); seriestolist(%); # Alternative with https://oeis.org/transforms.txt and the Somos Euler transform in A034950: p8 := [2,-3,2,-2,2,-3,2,-3] ; L := [seq(op(p8),i=1..10)] ; EULER(%) ; [1,op(%)] ; [0,op(AERATE(%,1))] ; # R. J. Mathar, Nov 11 2014
-
Mathematica
QP = QPochhammer; s = q*QP[q^8]*QP[q^16]*EllipticTheta[3, 0, q^2] + O[q]^80; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
Formula
From Seiichi Manyama, Sep 30 2018: (Start)
Let q = exp(Pi i t).
theta_3(q) = 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + ... .
G.f.: (theta_3(q) - theta_3(q^4))*(theta_3(q^32) - theta_3(q^8)/2)*theta_3(q^2).
Comments