cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A248397 Noncongruent squarefree numbers n with A248394(n)/d(n) = 1, where d(n) = A000005(n).

Original entry on oeis.org

1, 3, 33, 51, 57, 59, 83, 139, 177, 187, 209, 211, 267, 321, 339, 345, 379, 385, 411, 451, 489, 499, 515, 555, 587, 595, 649, 659, 665, 681, 707, 803, 811, 827, 835, 899, 921, 969, 1001, 1059, 1099, 1137, 1171, 1211, 1219, 1235, 1259, 1267, 1281, 1315, 1329, 1363
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A248398 Noncongruent squarefree numbers n with A248394(n)/d(n) = -1, where d(n) = A000005(n).

Original entry on oeis.org

11, 19, 35, 67, 91, 105, 115, 123, 129, 179, 195, 201, 227, 235, 249, 273, 347, 393, 403, 419, 427, 435, 473, 483, 563, 611, 635, 683, 691, 705, 715, 739, 753, 779, 787, 795, 817, 843, 851, 993, 1051, 1115, 1121, 1123, 1177, 1209, 1265, 1347, 1401, 1435, 1441
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A248399 Noncongruent squarefree numbers n with A248394(n)/d(n) = 2, where d(n) = A000005(n).

Original entry on oeis.org

73, 155, 185, 203, 241, 281, 329, 355, 545, 553, 579, 601, 627, 641, 697, 755, 763, 785, 865, 937, 1097, 1139, 1193, 1227, 1243, 1289, 1299, 1353, 1371, 1457, 1465, 1537, 1721, 1753, 1763, 1841, 1865, 1913, 1937, 1961, 2017, 2041, 2105, 2177, 2281, 2307, 2353
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A248400 Noncongruent squarefree numbers n with A248394(n)/d(n) = -2, where d(n) = A000005(n).

Original entry on oeis.org

17, 89, 97, 193, 217, 233, 259, 305, 377, 401, 449, 481, 497, 617, 667, 713, 745, 769, 897, 929, 955, 977, 979, 1009, 1011, 1027, 1033, 1049, 1065, 1337, 1345, 1355, 1385, 1409, 1417, 1489, 1507, 1555, 1739, 1769, 1771, 1801, 1803, 1817, 1921, 1945, 2001, 2019
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A248401 Noncongruent squarefree numbers n with A248394(n)/d(n) = 3, where d(n) = A000005(n).

Original entry on oeis.org

43, 131, 163, 417, 491, 537, 571, 619, 849, 913, 923, 1019, 1187, 1203, 1579, 1641, 1707, 1747, 1779, 1835, 1843, 1907, 2003, 2051, 2123, 2203, 2227, 2235, 2315, 2537, 2563, 2649, 2747, 2787, 2913, 2931, 3083, 3107, 3307, 3345, 3363, 3561, 3587, 3611, 3651, 3659
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A248402 Noncongruent squarefree numbers n with A248394(n)/d(n) = -3, where d(n) = A000005(n).

Original entry on oeis.org

107, 251, 283, 331, 547, 633, 643, 699, 737, 771, 883, 1041, 1147, 1163, 1307, 1459, 1483, 1497, 1523, 1531, 1619, 1627, 1699, 1793, 1883, 1915, 1923, 2049, 2179, 2251, 2283, 2361, 2363, 2411, 2427, 2433, 2443, 2467, 2539, 2651, 2843, 2971, 3091, 3147, 3187, 3203
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A248395 q-Expansion of the modular form of weight 3/2, g*theta(4) in Tunnell's notation (see Comments).

Original entry on oeis.org

0, 1, 0, 0, 0, 2, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, -4, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Oct 18 2014

Keywords

Comments

g = Product_{m>=1} (1-q^(8*m))*(1-q^(16*m)),
theta(t) = Sum_{n=-oo..oo} (q^(t*n^2)).
Although the OEIS does not normally include sequences in which only every fourth term is nonzero, this one is important enough to warrant an exception.

Crossrefs

The nonzero quadrisection is A080966, which has further information and references.
Cf. A248394.
Used in A248397-A248406.

Programs

  • Maple
    # This produces a list of the first 100 terms:
    g:=q*mul((1-q^(8*m))*(1-q^(16*m)),m=1..30);
    g:=series(g,q,100);
    th:=t->series( add(q^(t*n^2),n=-50..50), q, 100);
    series(g*th(4),q,100);
    seriestolist(%);
  • Mathematica
    QP := QPochhammer; a:= CoefficientList[Series[QP[q^8]*QP[q^16]* EllipticTheta[3, 0, q^4], {q, 0, 60}], q]; Join[{0}, Table[a[[n]], {n, 1, 50}]] (* G. C. Greubel, Jul 02 2018 *)
  • PARI
    my(q='q+O('q^80)); A = eta(q^8)^6/(q*eta(q^4)^2*eta(q^16)); concat([0], Vec(A)) \\ G. C. Greubel, Jul 02 2018

Formula

From G. C. Greubel, Jul 02 2018: (Start)
Expansion of eta(q^8)*eta(q^16)*theta_{3}(0, q^4)/q in powers of q.
Expansion of eta(q^8)^6/(q*eta(q^4)^2*eta(q^16)). (End)

A248406 Noncongruent squarefree numbers n with A248395(n)/d(n) = -2, where d(n) = A000005(n).

Original entry on oeis.org

146, 178, 274, 322, 466, 938, 994, 1002, 1234, 1394, 1498, 1714, 1866, 1906, 2066, 2098, 2162, 2194, 2386, 2578, 2586, 2786, 2794, 2962, 3002, 3034, 3218, 3266, 3346, 3658, 3682, 3914, 3986, 4090, 4130, 4594, 4738, 4786, 4946, 5170, 5210, 5234, 5266, 5402, 5458
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A034950 Expansion of eta(8z)*eta(16z)*theta_3(2z).

Original entry on oeis.org

1, 2, 0, 0, 1, -2, 0, 0, -4, -2, 0, 0, -3, 0, 0, 0, 4, -4, 0, 0, 0, 6, 0, 0, 1, 4, 0, 0, 4, 2, 0, 0, 0, -2, 0, 0, 4, -2, 0, 0, -3, 2, 0, 0, -4, -4, 0, 0, -4, 2, 0, 0, -8, -6, 0, 0, 8, -4, 0, 0, 1, -4, 0, 0, -4, 6, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 4, 8, 0, 0, 0, 6, 0, 0, 5, -2, 0, 0, 4, -2, 0, 0, 8, 4, 0, 0, -4, -8, 0, 0, -4, 8, 0, 0, 4
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^4 - 2*x^5 - 4*x^8 - 2*x^9 - 3*x^12 + 4*x^16 - 4*x^17 + ...
G.f. = q + 2*q^3 + q^9 - 2*q^11 - 4*q^17 - 2*q^19 - 3*q^25 + 4*q^33 - ...
		

Crossrefs

A bisection of A248394.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x] EllipticTheta[ 2, Pi/4, x] / Sqrt[8 x], {x, 0, n}]; (* Michael Somos, Feb 18 2015 *)
    QP = QPochhammer; s = QP[q^2]^5*(QP[q^8]/(QP[q]^2*QP[q^4])) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A) / (eta(x + A)^2 * eta(x^4 + A)), n))}; /* Michael Somos, Feb 16 2006 */

Formula

Euler transform of period 8 sequence [2, -3, 2, -2, 2, -3, 2, -3, ...]. - Michael Somos, Feb 16 2006
Expansion of q^(-1/2) * eta(q^2)^5 * eta(q^8) / (eta(q)^2 * eta(q^4)) in powers of q. - Michael Somos, Feb 16 2006
Expansion of psi(x)^2 * psi(-x^2) = phi(x) * psi(x^2) * psi(-x^2) = phi(x) * psi(x^4) * phi(-x^4) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 18 2015
G.f.: Product_{k>0} (1 + x^k)^2 * (1 - x^(2*k))^3 * (1 + x^(4*k)). - Michael Somos, Feb 16 2006
2 * a(n) = A080963(2*n + 1). a(4*n + 2) = a(4*n + 3) = 0. - Michael Somos, Feb 18 2015
a(n) = A072069(n+1) - A072068(n+1)/2. - Seichi Manymama, Sep 30 2018

A248407 Squarefree noncongruent numbers.

Original entry on oeis.org

1, 2, 3, 10, 11, 17, 19, 26, 33, 35, 42, 43, 51, 57, 58, 59, 66, 67, 73, 74, 82, 83, 89, 91, 97, 105, 106, 107, 113, 114, 115, 122, 123, 129, 130, 131, 139, 146, 155, 163, 170, 177, 178, 179, 185, 186, 187, 193, 195, 201, 202, 203, 209
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Intersection of A005117 and A165564.
Showing 1-10 of 13 results. Next