cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A248406 Noncongruent squarefree numbers n with A248395(n)/d(n) = -2, where d(n) = A000005(n).

Original entry on oeis.org

146, 178, 274, 322, 466, 938, 994, 1002, 1234, 1394, 1498, 1714, 1866, 1906, 2066, 2098, 2162, 2194, 2386, 2578, 2586, 2786, 2794, 2962, 3002, 3034, 3218, 3266, 3346, 3658, 3682, 3914, 3986, 4090, 4130, 4594, 4738, 4786, 4946, 5170, 5210, 5234, 5266, 5402, 5458
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A248403 Noncongruent squarefree numbers n with A248395(n)/d(n) = 1, where d(n) = A000005(n).

Original entry on oeis.org

2, 10, 58, 74, 114, 122, 130, 170, 258, 290, 314, 346, 354, 362, 370, 402, 474, 506, 586, 610, 618, 642, 714, 730, 746, 786, 826, 906, 922, 946, 962, 970, 986, 1066, 1074, 1090, 1162, 1194, 1218, 1258, 1306, 1338, 1378, 1474, 1506, 1514, 1554, 1562, 1626, 1658
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A248404 Noncongruent squarefree numbers n with A248395(n)/d(n) = -1, where d(n) = A000005(n).

Original entry on oeis.org

26, 42, 66, 106, 186, 202, 266, 418, 498, 530, 554, 570, 634, 682, 690, 754, 762, 770, 834, 858, 874, 930, 1010, 1034, 1082, 1114, 1130, 1266, 1290, 1298, 1354, 1370, 1410, 1490, 1570, 1586, 1634, 1698, 1834, 1930, 1946, 1986, 1994, 2002, 2074, 2082, 2090, 2146
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A248405 Noncongruent squarefree numbers n with A248395(n)/d(n) = 2, where d(n) = A000005(n).

Original entry on oeis.org

82, 282, 562, 626, 818, 914, 1042, 1106, 1138, 1202, 1426, 1442, 1578, 1618, 1778, 1802, 1874, 2114, 2258, 2338, 2410, 2482, 2506, 2562, 2642, 2674, 2714, 2866, 2874, 2938, 2954, 3322, 3498, 3506, 3602, 3810, 4314, 4354, 4458, 4562, 4826, 4930, 5026, 5258, 5322
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A248394 q-Expansion of the modular form of weight 3/2, g*theta(2) in Tunnell's notation (see Comments).

Original entry on oeis.org

0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, -2, 0, 0, 0, 0, 0, -4, 0, -2, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 4, 0, -2
Offset: 0

Views

Author

N. J. A. Sloane, Oct 18 2014

Keywords

Comments

g = q*Product_{m=1..oo} (1-q^(8*m))*(1-q^(16*m)),
theta(t) = Sum_{n=-oo..oo} q^(t*n^2).
Although the OEIS does not normally include sequences in which every other term is zero, this one is important enough to warrant an exception.

Crossrefs

The nonzero bisection is A034950, which has further information and references.
Used in A248397-A248406.
Cf. A000122 (theta_3(q)), A072068, A072069, A080917, A080918, A248395.

Programs

  • Maple
    # This produces a list of the first 100 terms:
    g:=q*mul((1-q^(8*m))*(1-q^(16*m)),m=1..30);
    g:=series(g,q,100);
    th:=t->series( add(q^(t*n^2),n=-50..50), q, 100);
    series(g*th(2),q,100);
    seriestolist(%);
    # Alternative with https://oeis.org/transforms.txt and the Somos Euler transform in A034950:
    p8 := [2,-3,2,-2,2,-3,2,-3] ;
    L := [seq(op(p8),i=1..10)] ;
    EULER(%) ;
    [1,op(%)] ;
    [0,op(AERATE(%,1))] ; # R. J. Mathar, Nov 11 2014
  • Mathematica
    QP = QPochhammer; s = q*QP[q^8]*QP[q^16]*EllipticTheta[3, 0, q^2] + O[q]^80; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)

Formula

From Seiichi Manyama, Sep 30 2018: (Start)
Let q = exp(Pi i t).
theta_3(q) = 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + ... .
G.f.: (theta_3(q) - theta_3(q^4))*(theta_3(q^32) - theta_3(q^8)/2)*theta_3(q^2).
a(2*n-1) = A080918(2*n-1) - A080917(2*n-1)/2 = A072069(n) - A072068(n)/2 for n > 0. (End)

A248397 Noncongruent squarefree numbers n with A248394(n)/d(n) = 1, where d(n) = A000005(n).

Original entry on oeis.org

1, 3, 33, 51, 57, 59, 83, 139, 177, 187, 209, 211, 267, 321, 339, 345, 379, 385, 411, 451, 489, 499, 515, 555, 587, 595, 649, 659, 665, 681, 707, 803, 811, 827, 835, 899, 921, 969, 1001, 1059, 1099, 1137, 1171, 1211, 1219, 1235, 1259, 1267, 1281, 1315, 1329, 1363
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A248407 Squarefree noncongruent numbers.

Original entry on oeis.org

1, 2, 3, 10, 11, 17, 19, 26, 33, 35, 42, 43, 51, 57, 58, 59, 66, 67, 73, 74, 82, 83, 89, 91, 97, 105, 106, 107, 113, 114, 115, 122, 123, 129, 130, 131, 139, 146, 155, 163, 170, 177, 178, 179, 185, 186, 187, 193, 195, 201, 202, 203, 209
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Intersection of A005117 and A165564.

A080966 Expansion of theta_4(q^2) * theta_2(q)^2/(4*q^(1/2)) in powers of q.

Original entry on oeis.org

1, 2, -1, -2, 0, -4, -1, 2, -4, 2, 4, 2, 1, -2, 4, 2, 4, 0, -4, 0, -3, 4, -4, -4, 0, -2, 0, -6, 0, 2, -1, -4, 4, -4, -4, 8, 4, 6, 0, 2, -8, 0, 7, 2, 4, 2, 4, 0, 0, -6, 4, 0, -4, 0, 0, 0, 1, -6, -4, 4, -8, -2, -4, 4, 0, 2, -4, -6, 0, -2, 4, -8, 1, 2, 0, 0, 4, 4, 4, -2, 4, 6, 0, -2, 0, -4, -8, 10, 8, 8, -1, 4, 4, 2, -4, -4, -8, 6, 4, -6, 8, -6, 4, 4
Offset: 0

Views

Author

Michael Somos, Feb 28 2003

Keywords

Comments

The nonzero quadrisection of A248395.
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			q + 2*q^5 - q^9 - 2*q^13 - 4*q^21 - q^25 + 2*q^29 - 4*q^33 + ...
		

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]^6/(QP[q]^2*QP[q^4]) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
    QP := QPochhammer; a:=CoefficientList[Series[QP[q^2]^6/(QP[q]^2*QP[q^4]), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 01 2018 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^6/eta(x+A)^2/eta(x^4+A), n))}

Formula

G.f.: Product_{k>0} (1+x^k)^2*(1-x^(2k))^3/(1+x^(2k)).
Expansion of f(-q^4)*f(q)^2 in powers of q where f(-q)=f(-q,-q^2) is a Ramanujan theta function.
Expansion of q^(-1/4)*eta(q^2)^6/(eta(q)^2*eta(q^4)) in powers of q.
Euler transform of period-4 sequence [2,-4,2,-3,...].
G.f.: Product_{k>0} (1-x^(2*k))^3*(1+x^k)^2/(1+x^(2*k)).
2*a(n) = A080964(4*n+1) = 2*A072071(4*n+1) - A072070(4*n+1).

A248398 Noncongruent squarefree numbers n with A248394(n)/d(n) = -1, where d(n) = A000005(n).

Original entry on oeis.org

11, 19, 35, 67, 91, 105, 115, 123, 129, 179, 195, 201, 227, 235, 249, 273, 347, 393, 403, 419, 427, 435, 473, 483, 563, 611, 635, 683, 691, 705, 715, 739, 753, 779, 787, 795, 817, 843, 851, 993, 1051, 1115, 1121, 1123, 1177, 1209, 1265, 1347, 1401, 1435, 1441
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019

A248399 Noncongruent squarefree numbers n with A248394(n)/d(n) = 2, where d(n) = A000005(n).

Original entry on oeis.org

73, 155, 185, 203, 241, 281, 329, 355, 545, 553, 579, 601, 627, 641, 697, 755, 763, 785, 865, 937, 1097, 1139, 1193, 1227, 1243, 1289, 1299, 1353, 1371, 1457, 1465, 1537, 1721, 1753, 1763, 1841, 1865, 1913, 1937, 1961, 2017, 2041, 2105, 2177, 2281, 2307, 2353
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2014

Keywords

Crossrefs

Extensions

More terms from Amiram Eldar, Oct 13 2019
Showing 1-10 of 13 results. Next