A248395 q-Expansion of the modular form of weight 3/2, g*theta(4) in Tunnell's notation (see Comments).
0, 1, 0, 0, 0, 2, 0, 0, 0, -1, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, -1, 0, 0, 0, 2, 0, 0, 0, -4, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 0, 0
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.
Crossrefs
Programs
-
Maple
# This produces a list of the first 100 terms: g:=q*mul((1-q^(8*m))*(1-q^(16*m)),m=1..30); g:=series(g,q,100); th:=t->series( add(q^(t*n^2),n=-50..50), q, 100); series(g*th(4),q,100); seriestolist(%);
-
Mathematica
QP := QPochhammer; a:= CoefficientList[Series[QP[q^8]*QP[q^16]* EllipticTheta[3, 0, q^4], {q, 0, 60}], q]; Join[{0}, Table[a[[n]], {n, 1, 50}]] (* G. C. Greubel, Jul 02 2018 *)
-
PARI
my(q='q+O('q^80)); A = eta(q^8)^6/(q*eta(q^4)^2*eta(q^16)); concat([0], Vec(A)) \\ G. C. Greubel, Jul 02 2018
Formula
From G. C. Greubel, Jul 02 2018: (Start)
Expansion of eta(q^8)*eta(q^16)*theta_{3}(0, q^4)/q in powers of q.
Expansion of eta(q^8)^6/(q*eta(q^4)^2*eta(q^16)). (End)
Comments