A248580 a(n) = the smallest triangular number T(k) such that n*T(k)-1 and n*T(k)+1 are twin primes or 0 if no solution exists for n; T(k) = A000217(k) = k-th triangular number.
6, 3, 6, 1, 6, 1, 6, 0, 0, 3, 78, 1, 66, 3, 10, 15, 6, 1, 78, 3, 300, 21, 6, 3, 6, 78, 10, 15, 210, 1, 378, 6, 6, 3, 66, 3, 1596, 6, 28, 6, 528, 1, 990, 15, 6, 3, 6, 66, 78, 3, 28, 6, 120, 15, 210, 105, 10, 6, 528, 1, 378, 21, 36, 3, 36, 3, 66, 15, 28, 6
Offset: 1
Keywords
Examples
a(5) = 6 because 6 is the smallest smallest triangular number with this property: 5*6 -+ 1 = 29 and 31 (twin primes).
Programs
-
Magma
A248580:=func
; [A248580(n): n in[1..100]] -
Mathematica
a248580[n_Integer] := Catch@Module[{T, k}, T[i_] := i (i + 1)/2; Do[If[And[PrimeQ[n*T[k] + 1], PrimeQ[n*T[k] - 1]], Throw[T[k]], 0], {k, 1, 10^4}] /. Null -> 0]; a248580 /@ Range[70] (* Michael De Vlieger, Nov 12 2014 *)
-
PARI
a(n) = {if ((n==8) || (n==9), return (0)); k = 1; while (!isprime(n*k*(k+1)/2-1) || !isprime(n*k*(k+1)/2+1), k++); k*(k+1)/2; } \\ Michel Marcus, Nov 12 2014
Comments