A248617 Decimal expansion of the solution when Gudermannian(x) equals 1.
1, 2, 2, 6, 1, 9, 1, 1, 7, 0, 8, 8, 3, 5, 1, 7, 0, 7, 0, 8, 1, 3, 0, 6, 0, 9, 6, 7, 4, 7, 1, 9, 0, 6, 7, 5, 2, 7, 2, 4, 2, 4, 8, 3, 5, 0, 2, 2, 0, 7, 4, 0, 2, 7, 9, 1, 3, 8, 6, 1, 6, 8, 4, 3, 5, 4, 2, 9, 8, 4, 6, 7, 6, 2, 4, 4, 2, 8, 0, 3, 8, 1, 6, 9, 2, 3, 7, 4, 2, 5, 6, 3, 7, 7, 9, 6, 6, 0, 9, 5, 3, 3, 4, 6, 9
Offset: 1
Examples
1.22619117088351707081306096747190675272424835022074027913861684354298467624428...
Links
- Wikipedia, Gudermannian function.
Crossrefs
Cf. A248618.
Programs
-
Maple
evalf(log(tan((2+Pi)/4)),100) # Vaclav Kotesovec, Oct 11 2014
-
Mathematica
RealDigits[ InverseGudermannian[ 1], 10, 111][[1]]
Formula
Equals log(tan((2+Pi)/4)). - Vaclav Kotesovec, Oct 11 2014
From Amiram Eldar, Apr 07 2022: (Start)
Equals 2*arctanh(tan(1/2)).
Equals Integral_{x=0..1} sec(x) dx. (End)
Comments