A248618 Decimal expansion of the solution when inverse Gudermannian(x) equals 1.
8, 6, 5, 7, 6, 9, 4, 8, 3, 2, 3, 9, 6, 5, 8, 6, 2, 4, 2, 8, 9, 6, 0, 1, 8, 4, 6, 1, 9, 1, 8, 4, 4, 4, 4, 1, 3, 7, 9, 6, 7, 9, 1, 9, 9, 2, 4, 8, 7, 6, 0, 0, 9, 9, 6, 1, 1, 8, 4, 8, 2, 2, 9, 7, 4, 2, 4, 4, 8, 2, 2, 9, 4, 5, 8, 4, 1, 7, 0, 2, 8, 2, 0, 9, 9, 2, 0, 9, 2, 3, 6, 4, 0, 4, 8, 5, 7, 2, 7, 4, 1, 4, 6, 5, 2
Offset: 0
Examples
0.86576948323965862428960184619184444137967919924876009961184822974244822945841... The wedge angle in degrees: 49.6049374208547003776513077348112118247866748819092710723979907940346891648208... - _Stanislav Sykora_, May 31 2015
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..2000
- Wikipedia, Gudermannian function.
Programs
-
Maple
evalf(arcsin((exp(2)-1)/(exp(2)+1)),100) # Vaclav Kotesovec, Oct 11 2014
-
Mathematica
RealDigits[ Gudermannian[ 1], 10, 111][[1]]
-
PARI
asin((exp(2)-1)/(exp(2)+1)) \\ Michel Marcus, Oct 11 2014
-
PARI
atan(exp(1))-atan(1/exp(1)) \\ Stanislav Sykora, May 31 2015
-
PARI
2*atan(exp(1))-Pi/2 \\ Charles R Greathouse IV, Jun 02 2015
Formula
Equals arcsin((exp(2)-1)/(exp(2)+1)). - Vaclav Kotesovec, Oct 11 2014
From Amiram Eldar, Apr 07 2022: (Start)
Equals 2*arctan(tanh(1/2)).
Equals Integral_{x=0..1} sech(x) dx. (End)
Comments