A248623 Triangle T(n,k) read by rows, of number of primes in interval [k*n, (k+1)*n] exclusive, n>=k.
0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 3, 2, 1, 2, 1, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 1, 4, 3, 3, 3, 2, 2, 3, 2, 2, 4, 1, 2, 4, 2, 4, 2, 3, 3, 1, 4, 2, 2, 2, 2
Offset: 1
Examples
Triangle starts: 0 1 1 1 1 1 2 1 1 2 1 2 2 1 1 2 2 2 1 1 2 2 2 1 2 2 2 1 2 3 2 1 2 1 2 2 3 2 2 3 2 2 2 2 2 4 2 2 3 2 2 3 2 1 4 3 3 3 2 2 3 2 2 4 1 2 4 2 4 2 3 3 1 4 2 2 2 2 T(1,1) = 0. T(11,9) = 4 because the number of primes in [99,110] is 4: {101, 103, 107, 109}.
Links
- M. El Bachraoui, Primes in the interval [2n,3n], Int. J. Contemp. Math. Sciences 1:13 (2006), pp. 617-621.
- A. Loo, On the primes in the interval [3n,4n], Int. J. Contemp. Math. Sciences 6 (2011), no. 38, 1871-1882.
- S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
- Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785
- Wikipedia, Oppermann's conjecture
Programs
-
Mathematica
T[n_, k_] := PrimePi[(k+1)n] - PrimePi[n k] - Boole[PrimeQ[(k+1)n]]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 23 2018, from PARI *)
-
PARI
tabl(nn) = {for (n=1, nn, for (k=1, n, print1(primepi((k+1)*n) - primepi(n*k) - isprime((k+1)*n), ", ");); print(););} \\ Michel Marcus, Nov 04 2014
Comments