cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248692 Fully multiplicative with a(prime(i)) = 2^i; If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime A000040(k) and c_k >= 0 then a(n) = Product_{k >= 1} 2^(k*c_k).

Original entry on oeis.org

1, 2, 4, 4, 8, 8, 16, 8, 16, 16, 32, 16, 64, 32, 32, 16, 128, 32, 256, 32, 64, 64, 512, 32, 64, 128, 64, 64, 1024, 64, 2048, 32, 128, 256, 128, 64, 4096, 512, 256, 64, 8192, 128, 16384, 128, 128, 1024, 32768, 64, 256, 128, 512, 256, 65536, 128, 256, 128, 1024, 2048, 131072, 128, 262144, 4096, 256, 64
Offset: 1

Views

Author

Antti Karttunen, Oct 11 2014

Keywords

Comments

Equally, if n = p_i * p_j * ... * p_k, where p_i, p_j, ..., p_k are the primes A000040(i), A000040(j), ..., A000040(k) in the prime factorization of n (indices i, j, ..., k not necessarily distinct), then a(n) = 2^i * 2^j * 2^k.
a(1) = 1 (empty product).
Fully multiplicative with a(prime(i)) = 2^i.

Crossrefs

Programs

  • Maple
    a:= n-> mul((2^numtheory[pi](i[1]))^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..64);  # Alois P. Heinz, Jan 14 2021
  • Mathematica
    a[n_] := Product[{p, e} = pe; (2^PrimePi[p])^e, {pe, FactorInteger[n]}];
    Array[a, 100] (* Jean-François Alcover, Jan 03 2022 *)
  • PARI
    A248692(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1] = 2^primepi(f[i,1])); factorback(f)); \\ Antti Karttunen, Feb 01 2021

Formula

a(n) = 2^A056239(n) = A000079(A056239(n)).
Other identities. For all n >= 1:
a(A122111(n)) = a(n).
a(A000040(n)) = A000079(n).
For all n >= 0:
a(A000079(n)) = A000079(n).
a(n) = Product_{d|n} 2^A297109(d). - Antti Karttunen, Feb 01 2021
Sum_{n>=1} 1/a(n) = A065446. - Amiram Eldar, Dec 24 2022