A248692 Fully multiplicative with a(prime(i)) = 2^i; If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime A000040(k) and c_k >= 0 then a(n) = Product_{k >= 1} 2^(k*c_k).
1, 2, 4, 4, 8, 8, 16, 8, 16, 16, 32, 16, 64, 32, 32, 16, 128, 32, 256, 32, 64, 64, 512, 32, 64, 128, 64, 64, 1024, 64, 2048, 32, 128, 256, 128, 64, 4096, 512, 256, 64, 8192, 128, 16384, 128, 128, 1024, 32768, 64, 256, 128, 512, 256, 65536, 128, 256, 128, 1024, 2048, 131072, 128, 262144, 4096, 256, 64
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..2048
Crossrefs
Programs
-
Maple
a:= n-> mul((2^numtheory[pi](i[1]))^i[2], i=ifactors(n)[2]): seq(a(n), n=1..64); # Alois P. Heinz, Jan 14 2021
-
Mathematica
a[n_] := Product[{p, e} = pe; (2^PrimePi[p])^e, {pe, FactorInteger[n]}]; Array[a, 100] (* Jean-François Alcover, Jan 03 2022 *)
-
PARI
A248692(n) = if(1==n,n,my(f=factor(n)); for(i=1,#f~,f[i,1] = 2^primepi(f[i,1])); factorback(f)); \\ Antti Karttunen, Feb 01 2021
Comments