cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248707 a(n) = f(3*n)/(f(n-1)*f(n)*f(n+1)), where f(k) = k!.

Original entry on oeis.org

3, 60, 1260, 27720, 630630, 14702688, 349188840, 8413788240, 205086088350, 5046360719400, 125149745841120, 3124367780788800, 78443948210518800, 1979201154850012800, 50151543548788717200, 1275619260617425959840, 32554866547007225016750, 833323952354971320243000
Offset: 1

Views

Author

Clark Kimberling, Oct 12 2014

Keywords

Comments

These are multinomial coefficients.

Examples

			a(2) = 6!/(1!*2!*3!) = 60.
		

Crossrefs

Programs

  • Maple
    seq(3*(3*n-1)!/((n-1)!^3*n*(n+1)), n=1..20); # Robert Israel, Mar 02 2017
  • Mathematica
    Table[(3 n)!/((n - 1)! n! (n + 1)!), {n, 1, 20}]
  • PARI
    a(n) = (3*n)! / ((n-1)!*n!*(n+1)!); \\ Amiram Eldar, Jun 11 2025
  • Sage
    [3*factorial(3*n-1)/(factorial(n-1)^3*n*(n+1)) for n in range(1,19)] # Stefano Spezia, Aug 16 2024
    

Formula

a(n) ~ 3^(3*n+1/2) / (2*Pi*n). - Vaclav Kotesovec, Oct 19 2014
From Robert Israel, Mar 02 2017: (Start)
G.f.: 3*x*hypergeom([4/3, 5/3], [3], 27*x).
n*(n+2)*a(n+1) = 3*(3*n+1)(3*n+2)*a(n). (End)

A248708 a(n) = f(4*n+2)/(f(n-1)*f(n)*f(n+1)*f(n+2)), where f(k) = k!.

Original entry on oeis.org

60, 12600, 2522520, 514594080, 107550162720, 22969641895200, 4995897112206000, 1103284402265073600, 246784661070292144800, 55803246694136969227200, 12736017918577260592084800, 2930174751896446667689440000, 678879630375093886522676256000, 158257286142440155623613107216000
Offset: 1

Views

Author

Clark Kimberling, Oct 12 2014

Keywords

Comments

These are multinomial coefficients.

Examples

			a(2) = 10!/(1!*2!*3!*4!) = 12600.
		

Crossrefs

Programs

  • Mathematica
    Table[(4 n + 2)!/((n - 1)! n! (n + 1)! (n + 2)!), {n, 1, 20}]
  • Sage
    [factorial(4*n + 2)/(factorial(n - 1)* factorial(n)*factorial(n + 1)*factorial(n + 2)) for n in range(1,14)] # Stefano Spezia, Aug 16 2024

Formula

a(n) ~ 2^(8*n+7/2) / (Pi^(3/2) * n^(3/2)). - Vaclav Kotesovec, Oct 19 2014

A248710 a(n) = f(6*n+3)/(f(n-2)*f(n-1)*f(n)*f(n+1)*f(n+2)*f(n+3)), where f(k) = k!.

Original entry on oeis.org

37837800, 2053230379200, 86825246363856000, 3434459445168687936000, 133396980694935715950192000, 5173935293233776678844146912000, 201687837026151453996918852912960000, 7920886423528046052820994110450678080000, 313629810506083768747620025974652020366480000
Offset: 2

Views

Author

Clark Kimberling, Oct 12 2014

Keywords

Comments

These are multinomial coefficients.

Examples

			a(3) = 21!/(1!*2!*3!*4!*5!*6!) = 2053230379200.
		

Crossrefs

Programs

  • Mathematica
    Table[(6 n + 3)!/((n - 2)! (n - 1)! n! (n + 1)! (n + 2)! (n + 3)!), {n, 2, 20}]
    Table[(6n+3)!/Times@@((n+Range[-2,3])!)  ,{n,2,20}] (* Harvey P. Dale, Jul 20 2020 *)
  • Sage
    [factorial(6*n + 3)/(factorial(n - 2)*factorial(n - 1)*factorial(n)*factorial(n + 1)*factorial(n + 2)*factorial(n + 3)) for n in range(2,11)] # Stefano Spezia, Aug 16 2024

Formula

a(n) ~ 3^(5/2) * 6^(6*n+1) / (Pi^(5/2)*n^(5/2)). - Vaclav Kotesovec, Oct 19 2014
Showing 1-3 of 3 results.