A248723 Decimal expansion of the Sum_{k>=1} 1/(6^k - 1).
2, 3, 4, 1, 4, 9, 1, 3, 0, 1, 3, 4, 8, 0, 9, 2, 0, 6, 4, 8, 5, 1, 1, 1, 6, 7, 2, 8, 1, 3, 8, 7, 2, 9, 1, 8, 5, 4, 6, 3, 6, 1, 0, 3, 4, 7, 8, 6, 5, 1, 3, 8, 9, 8, 5, 2, 2, 4, 2, 1, 3, 8, 6, 7, 1, 0, 2, 3, 8, 1, 9, 8, 6, 6, 2, 8, 7, 9, 2, 3, 2, 2, 5, 6, 7, 8, 8, 7, 9, 5, 0, 1, 8, 7, 8, 3, 9, 1, 2, 6, 6, 5, 5, 3, 4
Offset: 0
Examples
0.2341491301348092064851116728138729185463610347865138985224213867102381986628...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
evalf(sum(1/(6^k-1), k=1..infinity),120); # Vaclav Kotesovec, Oct 18 2014 # second program with faster converging series evalf( add( (1/6)^(n^2)*(1 + 2/(6^n - 1)), n = 1..11), 105); # Peter Bala, Jan 30 2022
-
Mathematica
x = 1/6; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
-
PARI
suminf(k=1, 1/(6^k-1)) \\ Michel Marcus, Oct 18 2014
Formula
Equals Sum_{k>=1} d(k)/6^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020