A248740 a(n) = Fibonacci(n) mod 1000.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 597, 584, 181, 765, 946, 711, 657, 368, 25, 393, 418, 811, 229, 40, 269, 309, 578, 887, 465, 352, 817, 169, 986, 155, 141, 296, 437, 733, 170, 903, 73, 976, 49, 25, 74, 99, 173, 272
Offset: 0
Keywords
Examples
a(17) = (a(16) + a(15)) mod 1000 = (987 + 610) mod 1000 = 1597 mod 1000 = 597.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, order 1500.
Programs
-
Magma
[Fibonacci(n) mod 1000: n in [0..80]]; // Vincenzo Librandi, Oct 17 2014
-
Maple
a:= proc(n) option remember; `if`(n<2, n, irem(a(n-1)+a(n-2), 1000)) end: seq(a(n), n=0..60); # Alois P. Heinz, Oct 18 2015
-
PARI
vector(100,n,fibonacci(n-1)%1000) \\ Derek Orr, Oct 17 2014
Formula
a(n) = (a(n-1) + a(n-2)) mod 1000 for n>1, a(0) = 0, a(1) = 1.
Extensions
More terms from Vincenzo Librandi, Oct 17 2014
Comments