cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248749 Decimal expansion of limit of the real part of f(1+i,n), where f(x,0) = 1 and f(x,n) = x + 1/f(x,n-1).

Original entry on oeis.org

1, 5, 2, 9, 0, 8, 5, 5, 1, 3, 6, 3, 5, 7, 4, 6, 1, 2, 5, 1, 6, 0, 9, 9, 0, 5, 2, 3, 7, 9, 0, 2, 2, 5, 2, 1, 0, 6, 1, 9, 3, 6, 5, 0, 4, 9, 8, 3, 8, 9, 0, 9, 7, 4, 3, 1, 4, 0, 7, 7, 1, 1, 7, 6, 3, 2, 0, 2, 3, 9, 8, 1, 1, 5, 7, 9, 1, 8, 9, 4, 6, 2, 7, 7, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Comments

See A046854 for a triangle of coefficients of the numerators and denominators of f(x,n). Note that the limit of f(1,n) is the golden ratio.

Examples

			limit = 1.52908551363574612516099052379022521061936504983890974314077117...
n   f(x,n)                                 Re(f(1+i,n))  Im(f(1+i,n))
0   1                                      1             0
1   1 + x                                  2             1
2   (1 + x + x^2)/(1 + x)                  7/5           4/5
3   (1 + 2*x + x^2 + x^3)/(1 + x + x^2)    20/13         9/13
Re(f(1+i,10)) = 815/533 = 1.529080...
Im(f(1+i,10)) = 396/533 = 0.742964...
		

Crossrefs

Programs

  • Maple
    evalf((1+sqrt(2+sqrt(5)))/2, 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    $RecursionLimit = Infinity; $MaxExtraPrecision = Infinity;
    f[x_, n_] := x + 1/f[x, n - 1]; f[x_, 1] = 1; t = Table[Factor[f[x, n]], {n, 1, 12}]; u = t /. x -> I + 1; {Re[u], Im[u]}
    {N[Re[u], 12], N[Im[u], 12]}
    t = Table[Factor[f[x, n]], {n, 1, 300}]; u = t /. x -> I + 1;
    r1 = N[Re[u][[300]], 130]
    r2 = N[Im[u][[300]], 130]
    d1 = RealDigits[r1]  (* A248749 *)
    d2 = RealDigits[r2]  (* A248750 *)

Formula

Equals (1+sqrt(2+sqrt(5)))/2. - Vaclav Kotesovec, Oct 19 2014