cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A248750 Decimal expansion of limit of the imaginary part of f(1+i,n), where f(x,0) = 1 and f(x,n) = x + 1/f(x,n-1).

Original entry on oeis.org

7, 4, 2, 9, 3, 4, 1, 3, 5, 8, 7, 8, 3, 2, 2, 8, 3, 9, 0, 9, 1, 4, 3, 1, 9, 3, 7, 9, 4, 7, 2, 6, 6, 2, 8, 1, 0, 9, 6, 2, 4, 2, 9, 9, 2, 0, 0, 1, 1, 8, 6, 5, 0, 5, 4, 7, 5, 8, 6, 9, 2, 0, 6, 2, 1, 9, 0, 5, 7, 7, 6, 3, 9, 5, 6, 8, 7, 8, 5, 4, 9, 0, 5, 9, 2, 3
Offset: 0

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Comments

See A046854 for a triangle of coefficients of the numerators and denominators of f(x,n). Note that the limit of f(1,n) is the golden ratio.

Examples

			0.742934135878322839091431937947266281096242992001186505475869206219...
n   f(x,n)                                 Re(f(1+i,n))  Im(f(1+i,n))
0   1                                      1             0
1   1 + x                                  2             1
2   (1 + x + x^2)/(1 + x)                  7/5           4/5
3   (1 + 2*x + x^2 + x^3)/(1 + x + x^2)    20/13         9/13
Re(f(1+i,10)) = 815/533 = 1.529080...
Im(f(1+i,10)) = 396/533 = 0.742964...
		

Crossrefs

Programs

  • Maple
    evalf((1+sqrt(sqrt(5)-2))/2, 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    $RecursionLimit = Infinity; $MaxExtraPrecision = Infinity;
    z = 20; (* For more accuracy, increase z *)
    f[x_, n_] := x + 1/f[x, n - 1];
    f[x_, 1] = 1; t = Table[Factor[f[x, n]], {n, 1, z}];
    u = t /. x -> I + 1; t = Table[Factor[f[x, n]], {n, 1, z}]; u = t /. x -> I + 1;
    r1 = N[Re[u][[z]], 130]
    r2 = N[Im[u][[z]], 130]
    d1 = RealDigits[r1]  (*A248749*)
    d2 = RealDigits[r2]  (*A248750*)

Formula

Equals (1+sqrt(sqrt(5)-2))/2. - Vaclav Kotesovec, Oct 19 2014
From Wolfdieter Lang, Mar 02 2018: (Start)
Equals (1 + (2 - phi)*sqrt(phi))/2, with phi = A001622.
Equals (1/10)*y*(1 - (1/50)*y^2) with y = -A300072. (End)

A248751 Decimal expansion of limit of the real part of f(1-i,n)/f(1-i,n+1), where f(x,n) is the n-th Fibonacci polynomial.

Original entry on oeis.org

5, 2, 9, 0, 8, 5, 5, 1, 3, 6, 3, 5, 7, 4, 6, 1, 2, 5, 1, 6, 0, 9, 9, 0, 5, 2, 3, 7, 9, 0, 2, 2, 5, 2, 1, 0, 6, 1, 9, 3, 6, 5, 0, 4, 9, 8, 3, 8, 9, 0, 9, 7, 4, 3, 1, 4, 0, 7, 7, 1, 1, 7, 6, 3, 2, 0, 2, 3, 9, 8, 1, 1, 5, 7, 9, 1, 8, 9, 4, 6, 2, 7, 7, 1, 1, 4
Offset: 0

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Comments

The analogous limit of f(1,n)/f(1,n+1) is the golden ratio (A001622).
Differs from A248749 only in the first digit. - R. J. Mathar, Oct 23 2014

Examples

			limit = 0.52908551363574612516099052379022521061936504...
Let q(x,n) = f(x,n)/f(x,n+1) and c = 1-i.
n   f(x,n)            Re(q(c,n))   Im(q(c,n))
1   1                 1/2          1/2
2   x                 3/5          1/5
3   1 + x^2           1/2          1/4
4   2*x + x^3         8/15         4/15
5   1 + 3*x^2 + x^4   69/130       33/130
Re(q(1-i,11)) = 5021/9490 = 0.5290832...
Im(q(1-i,11)) = 4879/18980 = 0.257060...
		

Crossrefs

Programs

  • Maple
    evalf((sqrt(2+sqrt(5))-1)/2, 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    z = 300; t = Table[Fibonacci[n, x]/Fibonacci[n + 1, x], {n, 1, z}];
    u = t /. x -> 1 - I;
    d1 = N[Re[u][[z]], 130]
    d2 = N[Im[u][[z]], 130]
    r1 = RealDigits[d1]  (* A248751 *)
    r2 = RealDigits[d2]  (* A248752 *)
  • PARI
    polrootsreal(4*x^4+8*x^3+2*x^2-2*x-1)[2] \\ Charles R Greathouse IV, Nov 26 2024

Formula

Equals (sqrt(2+sqrt(5))-1)/2. - Vaclav Kotesovec, Oct 19 2014
Showing 1-2 of 2 results.