cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248786 a(n) = 29*n + floor(n/29) + 0^n - 0^(n mod 29).

Original entry on oeis.org

0, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290, 319, 348, 377, 406, 435, 464, 493, 522, 551, 580, 609, 638, 667, 696, 725, 754, 783, 812, 841, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248
Offset: 0

Views

Author

Karl V. Keller, Jr., Oct 14 2014

Keywords

Comments

This is an approximation to A004922 (floor of n*phi^7, where phi is the golden ratio, A001622).
The "+ 0^n - 0^(n mod 29)" corrects a(n), for n=0 and multiples of 29. (See examples below.)

Examples

			For n = 0,  29*n + floor(0.0)  + 0^0  - 0^(0) =   0  + 0  + 1  - 1 = 0 (n=29*0).
For n = 28, 29*n + floor(0.97) + 0^28 - 0^(28)= 812  + 0  + 0  - 0 = 812.
For n = 29, 29*n + floor(1.0)  + 0^29 - 0^(0) = 841  + 1  + 0  - 1 = 841 (n=29*1).
For n = 31, 29*n + floor(1.1)  + 0^31 - 0^(2) = 899  + 1  + 0  - 0 = 900.
For n = 87, 29*n + floor(3.0)  + 0^87 - 0^(0) = 2523 + 3  + 0  - 1 = 2525 (n=29*3).
		

Crossrefs

Cf. A001622 (phi), A195819 (29*n).
Cf. A004922 (floor(n*phi^7)), A004962 (ceiling(n*phi^7)), A004942 (round(n*phi^7)).

Programs

  • Magma
    [(29*n+Floor(n/29))+ 0^n-0^(n mod 29): n in [0..60]]; // Vincenzo Librandi, Oct 14 2014
    
  • PARI
    a(n) = 29*n+ n\29 + 0^n - 0^(n % 29); \\ Michel Marcus, Oct 14 2014
  • Python
    from math import *
    from decimal import *
    getcontext().prec = 100
    for n in range(0,101):
      print(n, (29*n+floor(n/29.0))+ 0**n-0**(n%29))
    
  • Python
    def A248786(n):
        a, b = divmod(n,29)
        return 29*n+a-int(not b) if n else 0 # Chai Wah Wu, Jul 27 2022