A248786 a(n) = 29*n + floor(n/29) + 0^n - 0^(n mod 29).
0, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290, 319, 348, 377, 406, 435, 464, 493, 522, 551, 580, 609, 638, 667, 696, 725, 754, 783, 812, 841, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248
Offset: 0
Examples
For n = 0, 29*n + floor(0.0) + 0^0 - 0^(0) = 0 + 0 + 1 - 1 = 0 (n=29*0). For n = 28, 29*n + floor(0.97) + 0^28 - 0^(28)= 812 + 0 + 0 - 0 = 812. For n = 29, 29*n + floor(1.0) + 0^29 - 0^(0) = 841 + 1 + 0 - 1 = 841 (n=29*1). For n = 31, 29*n + floor(1.1) + 0^31 - 0^(2) = 899 + 1 + 0 - 0 = 900. For n = 87, 29*n + floor(3.0) + 0^87 - 0^(0) = 2523 + 3 + 0 - 1 = 2525 (n=29*3).
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 0..1000
- Ron Knott, Fibonacci numbers
- Eric Weisstein's World of Mathematics, Golden Ratio
- Wikipedia, Golden ratio
Crossrefs
Programs
-
Magma
[(29*n+Floor(n/29))+ 0^n-0^(n mod 29): n in [0..60]]; // Vincenzo Librandi, Oct 14 2014
-
PARI
a(n) = 29*n+ n\29 + 0^n - 0^(n % 29); \\ Michel Marcus, Oct 14 2014
-
Python
from math import * from decimal import * getcontext().prec = 100 for n in range(0,101): print(n, (29*n+floor(n/29.0))+ 0**n-0**(n%29))
-
Python
def A248786(n): a, b = divmod(n,29) return 29*n+a-int(not b) if n else 0 # Chai Wah Wu, Jul 27 2022
Comments