cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248793 Sigma(n) - 1 for n such that sigma(n) - 1 is prime.

Original entry on oeis.org

2, 3, 5, 11, 7, 17, 11, 13, 23, 23, 17, 19, 41, 31, 23, 59, 41, 29, 71, 31, 47, 53, 47, 37, 59, 89, 41, 43, 83, 71, 47, 71, 97, 53, 71, 79, 89, 59, 167, 61, 103, 83, 67, 71, 73, 113, 139, 167, 79, 83, 223, 107, 131, 179, 89, 233, 167, 127, 251, 97, 101, 103
Offset: 1

Views

Author

Jaroslav Krizek, Nov 01 2014

Keywords

Comments

a(n) = corresponding values of primes p = sigma(A248792(n)) - 1, where A248792(n) = numbers n such that sigma(n) - 1 is prime.
If there are at least two numbers k, h such that a(k) = a(h) = p, then p is in A158913.

Crossrefs

Programs

  • Magma
    [a: n in [1..1000] | IsPrime(a) where a is SumOfDivisors(n)-1]
    
  • Maple
    F:= proc(n)
    local r;
    r:= numtheory:-sigma(n)-1;
    if isprime(r) then r else NULL fi
    end proc:
    seq(F(n),n=1..1000); # Robert Israel, Nov 02 2014
  • Mathematica
    a248793[n_Integer] :=
    Cases[DivisorSigma[1, #] - 1 & /@ Range[n], ?PrimeQ]; a248793[104] (* _Michael De Vlieger, Nov 07 2014 *)
  • PARI
    for(n=1,10^3,if(isprime(sigma(n)-1),print1(sigma(n)-1,", "))) \\ Derek Orr, Nov 01 2014

Formula

a(n) = A000203(A248792(n)) - 1.
If A248792(n) is a prime p, then a(n) = A248792(n) = p.