A303904 Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^(k^3)).
1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13
Offset: 0
Keywords
Links
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n<0, 0, `if`(n=0, 1, `if`(n>i^2*(i+1)^2/4, 0, (t-> b(t, min(t, i-1)))(n-i^3)+b(n, i-1)))) end: a:= proc(n) option remember; `if`(n<0, 0, b(n, iroot(n, 3))+a(n-1)) end: seq(a(n), n=0..100); # Alois P. Heinz, May 02 2018
-
Mathematica
nmax = 91; CoefficientList[Series[1/(1 - x) Product[1 + x^k^3, {k, 1, Floor[nmax^(1/3) + 1]}], {x, 0, nmax}], x]
Formula
a(n) ~ exp(2^(7/4) * ((2^(1/3) - 1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * 3^(5/4) / (2^(15/8) * sqrt(Pi) * ((2^(1/3) - 1) * Gamma(1/3) * Zeta(4/3))^(3/8) * n^(1/8)). - Vaclav Kotesovec, May 04 2018
Comments