A248828 Number of 2n-length words, either empty or beginning with the first character of an n-ary alphabet, that can be built by repeatedly inserting doublets into the initially empty word.
1, 1, 3, 29, 523, 14289, 530526, 25066621, 1443039123, 98156060225, 7711583225338, 687676559089101, 68652814486950398, 7588068106131457489, 920064964125791788188, 121445943726500589053565, 17337678537189658091486851, 2661994674815094376005234945
Offset: 0
Keywords
Examples
a(2) = 3: aaaa, aabb, abba (with alphabet {a,b}).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
a:= n->`if`(n=0, 1, add(binomial(2*n, j)*(n-j)*(n-1)^j, j=0..n-1)/n): seq(a(n), n = 0..20);
-
Mathematica
Flatten[{1,1,Table[Sum[Binomial[2*n, j]*(n-j)*(n-1)^j, {j,0,n-1}]/n,{n,2,20}]}] (* Vaclav Kotesovec, Oct 15 2014 *)
Formula
a(n) = A183134(n,n).
a(n) ~ exp(-1) * 4^n * n^(n-5/2) / sqrt(Pi). - Vaclav Kotesovec, Oct 15 2014
a(n) = A294491(n) / n for n>0, a(0) = 1. - Alois P. Heinz, Oct 31 2017