A183134
Square array A(n,k) by antidiagonals. A(n,k) is the number of length 2n k-ary words (n,k>=0), either empty or beginning with the first character of the alphabet, that can be built by repeatedly inserting doublets into the initially empty word.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 0, 1, 1, 5, 10, 1, 0, 1, 1, 7, 29, 35, 1, 0, 1, 1, 9, 58, 181, 126, 1, 0, 1, 1, 11, 97, 523, 1181, 462, 1, 0, 1, 1, 13, 146, 1145, 4966, 7941, 1716, 1, 0, 1, 1, 15, 205, 2131, 14289, 48838, 54573, 6435, 1, 0
Offset: 0
A(3,2) = 10, because 10 words of length 6 beginning with the first character of the 2-letter alphabet {a, b} can be built by repeatedly inserting doublets (words with two equal letters) into the initially empty word: aaaaaa, aaaabb, aaabba, aabaab, aabbaa, aabbbb, abaaba, abbaaa, abbabb, abbbba.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, ...
0, 1, 3, 5, 7, 9, ...
0, 1, 10, 29, 58, 97, ...
0, 1, 35, 181, 523, 1145, ...
0, 1, 126, 1181, 4966, 14289, ...
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- C. Kassel and C. Reutenauer, Algebraicity of the zeta function associated to a matrix over a free group algebra, arXiv preprint arXiv:1303.3481, 2013
- A. Lakshminarayan, Z. Puchala, K. Zyczkowski, Diagonal unitary entangling gates and contradiagonal quantum states, arXiv preprint arXiv:1407.1169, 2014
Rows 0-10 give:
A000012,
A057427,
A004273,
A079273(k) for k>0,
A194716,
A194717,
A194718,
A194719,
A194720,
A194721,
A194722.
Columns 0-10 give:
A000007,
A000012,
A001700(n-1) for n>0,
A194723,
A194724,
A194725,
A194726,
A194727,
A194728,
A194729,
A194730.
Coefficients of row polynomials for k>0 in k, (k+1) are given by
A050166,
A157491.
-
A:= proc(n, k)
local j;
if n=0 then 1
elif k<=1 then k
else add(binomial(2*n,j)*(n-j)*(k-1)^j, j=0..n-1)/n
fi
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
a[n_, k_] := If[ n == 0, 1 , If[ k <= 1, k, Sum [Binomial[2*n, j]*(n-j)*(k-1)^j, {j, 0, n-1}] / n ] ]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A294491
Number of length 2n n-ary words that can be built by repeatedly inserting doublets into the initially empty word.
Original entry on oeis.org
1, 1, 6, 87, 2092, 71445, 3183156, 175466347, 11544312984, 883404542025, 77115832253380, 7564442149980111, 823833773843404776, 98644885379708947357, 12880909497761085034632, 1821689155897508835803475, 277402856595034529463789616, 45253909471856604392088994065
Offset: 0
a(2) = 6 because 6 words of length 4 can be built over 2-letter alphabet {a, b} by repeatedly inserting doublets (words with two equal letters) into the initially empty word: aaaa, aabb, abba, baab, bbaa, bbbb.
-
a:= n-> `if`(n=0, 1, add(binomial(2*n, j)*(n-j)*(n-1)^j, j=0..n-1)):
seq(a(n), n=0..21);
A378203
Number of palindromic n-ary words of length n that include the last letter of their respective alphabet.
Original entry on oeis.org
1, 1, 1, 5, 7, 61, 91, 1105, 1695, 26281, 40951, 771561, 1214423, 26916709, 42664987, 1087101569, 1732076671, 49868399761, 79771413871, 2560599031177, 4108933742199, 145477500542221, 234040800869107, 9059621800971105, 14605723004036255, 613627780919407801
Offset: 0
a(0) = 1: ().
a(1) = 1: (a).
a(2) = 1: (b,b).
a(3) = 5: (a,c,a), (b,c,b), (c,a,c), (c,b,c), (c,c,c).
-
a:= n-> (h-> n^h-`if`(n=0, 0, (n-1)^h))(ceil(n/2)):
seq(a(n), n=0..25); # Alois P. Heinz, Nov 21 2024
-
h[n_] := Ceiling[n/2];a[n_] := n^h[n] - (n - 1)^h[n];Join[{1},Table[a[n],{n,25}]] (* James C. McMahon, Nov 21 2024 *)
-
h(n) = {ceil(n/2)}
a(n) = {n^h(n)-(n-1)^h(n)}
-
def A378203(n): return n**(m:=n+1>>1)-(n-1)**m if n else 1 # Chai Wah Wu, Nov 21 2024
Showing 1-3 of 3 results.
Comments