A248836 Number of length n arrays x(i), i=1..n with x(i) in 0..i and no value appearing more than 2 times.
1, 2, 6, 22, 96, 482, 2736, 17302, 120576, 917762, 7574016, 67354582, 642041856, 6530291042, 70589700096, 808090395862, 9766250151936, 124258689304322, 1660195646078976, 23239748527125142, 340125128186658816, 5194627679316741602, 82645634692238278656
Offset: 0
Keywords
Examples
Some solutions for n=6 ..1....1....1....1....1....0....1....0....0....0....1....0....1....1....1....0 ..0....2....2....0....2....2....2....2....2....1....1....1....2....0....0....1 ..0....3....0....1....2....1....2....1....1....1....0....3....0....1....2....0 ..1....4....0....0....4....2....0....3....3....2....3....3....4....0....0....2 ..4....0....3....4....3....4....4....0....1....5....4....2....2....2....2....4 ..5....6....4....5....4....0....3....6....6....5....0....2....5....4....4....4
Links
- R. H. Hardin, Table of n, a(n) for n = 0..210
Formula
From Seiichi Manyama, Feb 17 2025: (Start)
Conjecture: E.g.f.: 1/(1 - sin(x))^2.
If the above conjecture is correct, the following general term is obtained:
a(n) = Sum_{k=0..n} (k+1)! * i^(n-k) * A136630(n,k), where i is the imaginary unit. (End)
Conjecture from Mikhail Kurkov, Jun 26 2025: (Start)
a(n) = R(n+1,0) where
R(0,0) = 1,
R(n,k) = Sum_{j=0..n-k-1} R(n-1,j) for 0 <= k < n,
R(n,n) = Sum_{j=0..n-1} R(n,j). (End)
Extensions
a(0)=1 prepended by Seiichi Manyama, Feb 17 2025
Comments