cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248855 a(n) is the smallest positive integer m such that if k >= m then a(k+1,n)^(1/(k+1)) <= a(k,n)^(1/k), where a(k,n) is the k-th term of the sequence {p | p and p+2n are primes}.

Original entry on oeis.org

1, 1, 1, 1, 3556, 1, 34, 3, 4, 1, 2, 1, 11285, 5, 2, 124, 569, 1, 290, 3, 1, 165, 2, 1, 1, 2, 1, 316, 1, 2, 58957, 1, 3, 58617, 522, 2, 1, 1, 4, 1, 2, 1, 1, 2, 1, 7932, 4, 1, 5875, 1679, 4, 4, 3, 3, 1, 2, 307, 1, 1, 1, 1, 1, 4, 3206, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 2, 11170, 1, 2, 4245, 1, 1, 81, 2, 1, 1, 2, 58, 1, 3, 4, 7303, 1, 1, 5, 1, 3, 3, 3, 383, 111408, 1
Offset: 0

Views

Author

Keywords

Comments

All terms conjecturally are found. Note that according to the definition a(k,0) is the k-th term of the sequence {p | p is prime} namely for every positive integer k, a(k,0) = prime(k). Hence if Firoozbakht's conjecture is true then a(0)=1.

Examples

			a(0)=a(1)=a(2)=a(3)=1 conjecturally states that the four sequences A000040, A001359, A023200 and A023201 have this property: For every positive integer n, b(n) exists and b(n+1) < b(n)^(1+1/n). Namely b(n)^(1/n) is a strictly decreasing function of n.
If in the definition instead of the sequence {p | p and p+2n are primes} we set {p | p is prime and nextprime(p)=p+2n} then it seems that except for n=3 all terms of the new sequence {c(n)} are equal to 1 and for n=3, c(3)=7746. Note that c(3)=7746 means that the sequence {p | p is prime and nextprime(p)=p+6} = A031924 has this property: For all k >= 7746, A031924(k+1)^(1/(k+1)) < A031924(k)^(1/k).
		

Crossrefs