A248884 Expansion of Product_{k>=1} (1+x^k)^(k^5).
1, 1, 32, 275, 1763, 12421, 85808, 561074, 3535678, 21815897, 131733641, 778099521, 4505634324, 25635135074, 143507764032, 791243636305, 4300983535471, 23070300486656, 122213931799869, 639848848696540, 3312824859756453, 16972058378914997, 86082216143323410
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 22.
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1+x^k)^k^5: k in [1..m]]) )); // G. C. Greubel, Oct 31 2018 -
Maple
b:= proc(n) option remember; add( (-1)^(n/d+1)*d^6, d=numtheory[divisors](n)) end: a:= proc(n) option remember; `if`(n=0, 1, add(b(k)*a(n-k), k=1..n)/n) end: seq(a(n), n=0..35); # Alois P. Heinz, Oct 16 2017
-
Mathematica
nmax=50; CoefficientList[Series[Product[(1+x^k)^(k^5),{k,1,nmax}],{x,0,nmax}],x]
-
PARI
m=50; x='x+O('x^m); Vec(prod(k=1, m, (1+x^k)^k^5)) \\ G. C. Greubel, Oct 31 2018
Formula
a(n) ~ (5*zeta(7))^(1/14) * 3^(2/7) * exp(zeta(7)^(1/7) * 2^(-9/7) * 3^(-3/7) * 5^(1/7) * 7^(8/7) * n^(6/7)) / (2^(163/252) * 7^(3/7) * sqrt(Pi) * n^(4/7)), where zeta(7) = A013665.
Comments