A248907 Numbers consisting only of digits 2 and 3, ordered according to the value obtained when the digits are interspersed with (right-associative) ^ operators.
2, 3, 22, 23, 32, 222, 33, 322, 223, 232, 323, 332, 2222, 3222, 233, 333, 2322, 3322, 2223, 3223, 2232, 3232, 2323, 3323, 2332, 3332, 22222, 32222, 23222, 33222, 2233, 3233, 2333, 3333, 22322, 32322, 23322, 33322, 22223, 32223, 23223, 33223, 22232, 32232
Offset: 1
Links
- Vladimir Reshetnikov, 2-3 sequence puzzle, SeqFan list, Mar 18 2015.
- Vladimir Reshetnikov et al., Power towers of 2 and 3 - looking for a proof, on StackExchange.com, Mar 19 2015
Crossrefs
Programs
-
Haskell
a248907 = a032810 . a185969
-
Mathematica
ClearAll[a, p]; p[d_, n_] := d 10^IntegerLength[n] + n; a[n_ /; n <= 12] := a[n] = {2, 3, 22, 23, 32, 222, 33, 322, 223, 232, 323, 332}[[n]]; a[n_ /; OddQ[n]] := a[n] = p[2, a[(n - 1)/2]]; a[n_] := a[n] = p[3, a[(n - 2)/2]]; Array[a, 100]
-
PARI
vecsort(A032810,(a,b)->A256229(a)>A256229(b)) \\ Assuming that A032810 is defined as a vector. Append [1..N] if the vector A032810 has too many (thus too large) elements: recall that 33333 => 3^(3^(3^(3^3))). - M. F. Hasler, Mar 21 2015
Extensions
Edited by M. F. Hasler, Mar 21 2015
Comments