A248925 Triangle in which row n consists of the coefficients in Sum_{m=0..n} x^m * Product_{k=m+1..n} (1-k*x), as read by rows.
1, 1, 0, 1, -2, 1, 1, -5, 7, -2, 1, -9, 27, -30, 9, 1, -14, 72, -165, 159, -44, 1, -20, 156, -597, 1149, -998, 265, 1, -27, 296, -1689, 5328, -9041, 7251, -1854, 1, -35, 512, -4057, 18840, -51665, 79579, -59862, 14833, 1, -44, 827, -8665, 55353, -221225, 544564, -776073, 553591, -133496
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, -2, 1; 1, -5, 7, -2; 1, -9, 27, -30, 9; 1, -14, 72, -165, 159, -44; 1, -20, 156, -597, 1149, -998, 265; 1, -27, 296, -1689, 5328, -9041, 7251, -1854; 1, -35, 512, -4057, 18840, -51665, 79579, -59862, 14833; 1, -44, 827, -8665, 55353, -221225, 544564, -776073, 553591, -133496; 1, -54, 1267, -16935, 142003, -774755, 2756814, -6221713, 8314321, -5669406, 1334961; ... Generating method for row n: n=0: 1 = 1; n=1: 1 + 0*x = (1-x) * ( 1 + x/(1-x) ); n=2: 1 - 2*x + x^2 = (1-x)*(1-2*x) * ( 1 + x/(1-x) + x^2/((1-x)*(1-2*x)) ); n=3: 1 - 5*x + 7*x^2 - 2*x^3 = (1-x)*(1-2*x)*(1-3*x) * ( 1 + x/(1-x) + x^2/((1-x)*(1-2*x)) + x^3/((1-x)*(1-2*x)*(1-3*x)) ); n=4: 1 - 9*x + 27*x^2 - 30*x^3 + 9*x^4 = (1-x)*(1-2*x)*(1-3*x)*(1-4*x) * ( 1 + x/(1-x) + x^2/((1-x)*(1-2*x)) + x^3/((1-x)*(1-2*x)*(1-3*x)) + x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) ); ... Compare the row g.f.s to the o.g.f. of Bell numbers (A000110): B(x) = 1 + x/(1-x) + x^2/((1-x)*(1-2*x)) + x^3/((1-x)*(1-2*x)*(1-3*x)) + x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) +... Central terms of triangle begin: [1, -2, 27, -597, 18840, -774755, 39320575, -2375828028, 166592007731, -13300276081039, 1191315248017730, ...].
Programs
-
Mathematica
Table[LinearSolve[Table[StirlingS2[m+j, n], {m, 0, n}, {j, n, 0, -1}], Table[Sum[StirlingS2[m, j], {j, 0, n}], {m, 0, n}]], {n, 0, 20}] // Flatten (* Robert A. Russell, Mar 30 2018 *) Table[PadRight[CoefficientList[Sum[x^m*Product[1-j*x, {j, m+1, n}], {m, 0, n}], x], n+1], {n, 0, 20}] // Flatten (* Robert A. Russell, Apr 08 2018 *) T[n_, 0] := T[n,0] = 1; T[n_, k_] := T[n,k] = If[k
Robert A. Russell, Apr 25 2018 *) -
PARI
{T(n,k)=polcoeff(sum(m=0,n, x^m*prod(j=m+1,n,1-j*x)), k)} for(n=0,10,for(k=0,n,print1(T(n,k),", "));print(""))
Formula
Right border equals A000166, the subfactorial numbers.
Row sums equal A000166 (shift right 1 place).
Sum_{k=0..n} A008277(m, k) = Sum_{j=0..n} T(n, j)*A008277(m+n-j, n) where A008277(m, k) are Stirling subset numbers. - Robert A. Russell, Mar 30 2018
T(n,0) = 1.
For k>0, T(n,k) = [k==n] + [kRobert A. Russell, Apr 25 2018
Comments