A248927 Triangle read by rows: T(n,k) are the coefficients of the Lagrange (compositional) inversion of a function in terms of the Taylor series expansion of its reciprocal, n >= 1, k = 1..A000041(n-1).
1, 1, 2, 1, 6, 9, 1, 24, 72, 12, 16, 1, 120, 600, 300, 200, 50, 25, 1, 720, 5400, 5400, 2400, 450, 1800, 450, 60, 90, 36, 1, 5040, 52920, 88200, 29400, 22050, 44100, 7350, 4410, 2940, 4410, 882, 245, 147, 49, 1, 40320, 564480, 1411200, 376320, 705600, 940800
Offset: 1
Examples
Triangle T(n,k) begins: 1; 1; 2, 1; 6, 9, 1; 24, 72, 12, 16, 1; 120, 600, 300, 200, 50, 25, 1; 720, 5400, 5400, 2400, 450, 1800, 450, 60, 90, 36, 1; ... For f(t) = e^t-1, h(t) = t/f(t) = t/(e^t-1), the e.g.f. for the Bernoulli numbers, and plugging the Bernoulli numbers into the Lagrange inversion formula gives g(t) = t - t^2/2 + t^3/3 + ... = log(1+t).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..2087 (rows 1..20)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Tom Copeland, The Lagrange Reversion Theorem and the Lagrange Inversion Formula
Crossrefs
Programs
-
PARI
C(v)={my(n=vecsum(v), S=Set(v)); n!^2/((n-#v+1)!*prod(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); x!^c*c!))} row(n)=[C(Vec(p)) | p<-Vecrev(partitions(n-1))] { for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 02 2022
Formula
For j>1, there are P(j,m;a...) = j! / [ (j-m)! (a_1)! (a_2)! ... (a_(j-1))! ] permutations of h_0 through h_(j-1) in which h_0 is repeated (j-m) times; h_1, repeated a_1 times; and so on with a_1 + a_2 + ... + a_(j-1) = m.
If, in addition, a_1 + 2 * a_2 + ... + (j-1) * a_(j-1) = j-1, then each distinct combination of these arrangements is correlated with a partition of j-1.
T(j,k) is [(j-1)!/j]* P(j,m;a...) / [(2!)^a_2 (3!)^a_3 ... ((j-1)!)^a_(j-1) ] for the k-th partition of j-1. The partitions are in reverse order--from bottom to top--from the order in Abramowitz and Stegun (page 831).
For example, from g(t) above, T(6,3) = [5!/6][6!/(3!*2!)]/(2!)^2 = 300 for the 3rd partition from the bottom under n=6-1=5 with m=3 parts, and T(6,5) = [5!/6][6!/4!]/(2!*3!) = 50.
If the initial factorial and final denominator are removed and the partitions reversed in order, A134264 is obtained, a refinement of the Narayana numbers.
For f(t) = t*e^(-t), g(t) = T(t), the Tree function, which is the e.g.f. of A000169, and h(t) = t/f(t) = e^t, so h_n = 1 for all n in this case; therefore, the row sums of A248927 are A000169(n)/n = n^(n-2) = A000272(n).
Let W(x) = 1/(df(x)/dx)= 1/{d[x/h(x)]/dx}=1/{d[x/[h_0+h_1*x+ ...]]/dx}. Then the partition polynomials above are given by (1/n)(W(x)*d/dx)^n x, evaluated at x=0, and the compositional inverse of f(t) is g(t)= exp(t*W(x)*d/dx) x, evaluated at x=0. Also, dg(t)/dt = W(g(t)). See A145271.
With exp[x* PS(.,t)] = exp[t*g(x)]=exp[x*W(y)d/dy] exp(t*y) eval. at y=0, the raising (creation) and lowering (annihilation) operators defined by R PS(n,t) = PS(n+1,t) and L PS(n,t)= n * PS(n-1,t) are R = t * W(d/dt) and L =(d/dt)/h(d/dt)=(d/dt) 1/[(h_0)+(h_1)*d/dt+(h_2)*(d/dt)^2/2!+...], which will give a lowering operator associated to the refined f-vectors of permutohedra (cf. A133314 and A049019).
Then [dPS(n,z)/dz]/n eval. at z=0 are the row partition polynomials of this entry. (Cf. A139605, A145271, and link therein to Mathemagical Forests for relation to planted trees on p. 13.)
As noted in A248120 and A134264, this entry is given by the Hadamard product by partition of A134264 and A036038. For example, (1,4,2,6,1)*(1,4,6,12,24) = (1,16,12,72,24). - Tom Copeland, Nov 25 2016
T(n,k) = ((n-1)!)^2/((n-j)!*Product_{i>=1} s_i!*(i!)^s_i), where (1*s_1 + 2*s_2 + ... = n-1) is the k-th partition of n-1 and j = s_1 + s_2 ... is the number of parts. - Andrew Howroyd, Feb 02 2022
Extensions
Name edited and terms a(31) and beyond from Andrew Howroyd, Feb 02 2022
Comments