cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249013 a(n) = floor( (n-1) * (n+4) / 10 ).

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 6, 8, 10, 12, 15, 17, 20, 23, 26, 30, 33, 37, 41, 45, 50, 54, 59, 64, 69, 75, 80, 86, 92, 98, 105, 111, 118, 125, 132, 140, 147, 155, 163, 171, 180, 188, 197, 206, 215, 225, 234, 244, 254, 264, 275, 285, 296, 307, 318, 330, 341, 353, 365
Offset: 1

Views

Author

Michael Somos, Oct 19 2014

Keywords

Comments

A028557(n) without the least significant digit. - R. J. Mathar, Aug 11 2021

Examples

			G.f. = x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 8*x^8 + 10*x^9 + 12*x^10 + ...
		

Crossrefs

Programs

  • Magma
    [Floor((n-1)*(n+4)/10): n in [1..60]]; // Vincenzo Librandi, Jan 10 2015
  • Mathematica
    a[ n_] := Quotient[ (n - 1) (n + 4), 10];
    LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {0, 0, 1, 2, 3, 5, 6}, 60] (* or *) CoefficientList[Series[x^2 (1 + x^3 - x^4) / ((1 - x)^2 (1 - x^5)), {x, 0, 60}], x] (* Vincenzo Librandi, Jan 10 2015 *)
  • PARI
    {a(n) = (n-1) * (n+4) \ 10};
    
  • PARI
    {a(n) = if( n<-1, n = -3-n); -(n<1) + polcoeff( x^3*(1 + x^3 - x^4) / ((1 - x)^2 * (1 - x^5)) + x * O(x^n), n)};
    

Formula

G.f.: x^3 * (1 + x^3 - x^4) / ((1 - x)^2 * (1 - x^5)) = x^3*(1+x^3-x^4)/ ( (1-x)^3*(1+x+x^2+x^3+x^4)).
a(n) = a(-3-n) for all n in Z.
a(n) = a(n-5) + n-1 for all n in Z.
a(n) + a(n+4) = min( a(n+1) + a(n+3), a(n+2) + a(n+2) ) + 1 for all n in Z.
A249020(n) = a(n+1) + 1 for all n in Z. - Michael Somos, Jan 09 2015