cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249020 a(n) = floor( n * (n+5) / 10) + 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 9, 11, 13, 16, 18, 21, 24, 27, 31, 34, 38, 42, 46, 51, 55, 60, 65, 70, 76, 81, 87, 93, 99, 106, 112, 119, 126, 133, 141, 148, 156, 164, 172, 181, 189, 198, 207, 216, 226, 235, 245, 255, 265, 276, 286, 297, 308, 319, 331, 342, 354, 366
Offset: 0

Views

Author

Michael Somos, Oct 19 2014

Keywords

Comments

If the s(n) are the Somos-4 polynomials, then s(n) = x^a(n-6) * y^a(n-4) * z^a(n-5) * f(n) where f(n) is an irreducible polynomial. - Michael Somos, Feb 21 2020

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 7*x^6 + 9*x^7 + ...
Somos-4 polynomial s(7) = x^1 * y^3 * z^2 * (z + 2*y*z + x*y^2 + y^2*z + x*y*z + x*y^2*z) where 1 = a(7-6), 3 = a(7-4), 2 = a(7-5). - _Michael Somos_, Feb 21 2020
		

Crossrefs

Programs

  • Magma
    [Floor(n*(n+5)/10) + 1: n in [0..60]]; // G. C. Greubel, Aug 04 2018
  • Mathematica
    a[ n_] := Quotient[ n (n + 5), 10] + 1;
    CoefficientList[Series[(1-x+x^2)/((1-x)^2*(1-x^5)), {x,0,60}], x] (* or *) Table[Floor[n*(n+5)/10]+1, {n,0,60}] (* G. C. Greubel, Aug 04 2018 *)
  • PARI
    {a(n) = n * (n + 5) \ 10 + 1};
    
  • PARI
    {a(n) = if( n<0, n = -5-n); polcoeff( (1 - x + x^2) / ((1 - x)^2 * (1 - x^5)) + x * O(x^n), n)};
    

Formula

G.f.: (1 - x + x^2) / ((1 - x)^2 * (1 - x^5)) = (1-x+x^2)/ ( (1-x)^3*(1+x+x^2+x^3+x^4)).
Euler transform of length 6 sequence [1, 1, 1, 0, 1, -1].
a(n) = a(-5-n) for all n in Z.
a(n) = a(n-5) + n for all n in Z.
a(n) + a(n+4) = min( a(n+1) + a(n+3), a(n+2) + a(n+2)) + 1 for all n in Z.
a(n) = A249013(n+1) + 1 for all n in Z.
a(n) = A008669(n) - A008669(n-6) for all n in Z.