cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249095 Triangle read by rows: interleaving successive pairs of rows of Pascal's triangle.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 4, 3, 6, 3, 4, 1, 1, 1, 1, 5, 4, 10, 6, 10, 4, 5, 1, 1, 1, 1, 6, 5, 15, 10, 20, 10, 15, 5, 6, 1, 1, 1, 1, 7, 6, 21, 15, 35, 20, 35, 15, 21, 6, 7, 1, 1, 1, 1, 8, 7, 28, 21, 56, 35, 70, 35, 56, 21, 28, 7, 8, 1, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 14 2014

Keywords

Comments

Length of row n = 2*n+1;
T(n,2*k) = A007318(n,k), 0 <= k <= n;
T(n,2*k+1) = A007318(n-1,k-1), n > 0 and 0 <= k < n;
T(n,k) = T(n-1,k-2) + T(n-1,k), n > 0 and 2 <= k <= n-2;
T(n,2*k) = T(n-1,2*k) + T(n-1,2*(k-1)), k = 0..n;
T(n,2*k+1) = T(n-2,2*k), k = 0..n-1;
T(n,n) = A128014(n);
A105321(n) = number of odd terms in row n;
A249304(n) = number of even terms in row n;
T(n,k) mod 2 = A249133(n,k).

Examples

			The triangle begins:
.  0:                              1
.  1:                           1  1   1
.  2:                       1   1  2   1  1
.  3:                    1  1   3  2   3  1  1
.  4:                 1  1  4   3  6   3  4  1  1
.  5:              1  1  5  4  10  6  10  4  5  1  1
.  6:           1  1  6  5 15  10 20  10 15  5  6  1  1
.  7:        1  1  7  6 21 15  35 20  35 15 21  6  7  1  1
.  8:     1  1  8  7 28 21 56  35 70  35 56 21 28  7  8  1  1
.  9:  1  1  9  8 36 28 84 56 126 70 126 56 84 28 36  8  9  1  1 .
		

Crossrefs

Cf. A005408 (row lengths), A128014 (central terms), A003945 (row sums), A249111 (partial sums per row), A007318 (Pascal).

Programs

  • Haskell
    import Data.List (transpose)
    a249095 n k = a249095_tabf !! n !! k
    a249095_row n = a249095_tabf !! n
    a249095_tabf = [1] : map (concat . transpose)
       (zipWith ((. return) . (:)) (tail a007318_tabl) a007318_tabl)
  • Mathematica
    t[n_, k_] := If[n > 1 && 1 < k < 2*n - 1, If[EvenQ[k], t[n - 1, k] + t[n - 1, k - 2], t[n - 1, k - 1]], 1]; Grid[Table[t[n, k], {n, 0, 9}, {k, 0, 2*n}]] (* L. Edson Jeffery, Nov 30 2014 *)

Formula

T(n,2*k) = T(n,2*k-1) + T(n,2*k+1), 0 < k < n.