A249095 Triangle read by rows: interleaving successive pairs of rows of Pascal's triangle.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 1, 1, 1, 4, 3, 6, 3, 4, 1, 1, 1, 1, 5, 4, 10, 6, 10, 4, 5, 1, 1, 1, 1, 6, 5, 15, 10, 20, 10, 15, 5, 6, 1, 1, 1, 1, 7, 6, 21, 15, 35, 20, 35, 15, 21, 6, 7, 1, 1, 1, 1, 8, 7, 28, 21, 56, 35, 70, 35, 56, 21, 28, 7, 8, 1, 1
Offset: 0
Examples
The triangle begins: . 0: 1 . 1: 1 1 1 . 2: 1 1 2 1 1 . 3: 1 1 3 2 3 1 1 . 4: 1 1 4 3 6 3 4 1 1 . 5: 1 1 5 4 10 6 10 4 5 1 1 . 6: 1 1 6 5 15 10 20 10 15 5 6 1 1 . 7: 1 1 7 6 21 15 35 20 35 15 21 6 7 1 1 . 8: 1 1 8 7 28 21 56 35 70 35 56 21 28 7 8 1 1 . 9: 1 1 9 8 36 28 84 56 126 70 126 56 84 28 36 8 9 1 1 .
Links
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a249095 n k = a249095_tabf !! n !! k a249095_row n = a249095_tabf !! n a249095_tabf = [1] : map (concat . transpose) (zipWith ((. return) . (:)) (tail a007318_tabl) a007318_tabl)
-
Mathematica
t[n_, k_] := If[n > 1 && 1 < k < 2*n - 1, If[EvenQ[k], t[n - 1, k] + t[n - 1, k - 2], t[n - 1, k - 1]], 1]; Grid[Table[t[n, k], {n, 0, 9}, {k, 0, 2*n}]] (* L. Edson Jeffery, Nov 30 2014 *)
Formula
T(n,2*k) = T(n,2*k-1) + T(n,2*k+1), 0 < k < n.
Comments