cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249100 Triangular array read by rows: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 3, 1, 5, 3, 1, 21, 12, 3, 1, 45, 48, 21, 3, 1, 231, 177, 81, 32, 3, 1, 585, 855, 450, 120, 45, 3, 1, 3465, 3240, 2070, 930, 165, 60, 3, 1, 9945, 18000, 10890, 4110, 1695, 216, 77, 3, 1, 65835, 71505, 57330, 28560, 7245, 2835, 273, 96, 3, 1, 208845, 443835, 300195, 143640, 64155, 11781, 4452, 336, 117, 3, 1
Offset: 0

Views

Author

Clark Kimberling, Oct 21 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + (2*n+1)/f(n-1,x), where f(0,x) = 1.
(Sum of numbers in row n) = A249101(n) for n >= 0.
(n-th term of column 1) = A235136(n) for n >= 1.

Examples

			f(0,x) = 1/1, so that p(0,x) = 1;
f(1,x) = (3 + x)/1, so that p(1,x) = 3 + x;
f(2,x) = (5 + 3*x + x^2)/(3 + x), so that p(2,x) = 5 + 3*x + x^2.
First 6 rows of the triangle of coefficients:
    1;
    3,   1;
    5,   3,   1;
   21,  12,   3,   1;
   45,  48,  21,   3,   1;
  231, 177,  81,  32,   3,   1;
		

Crossrefs

Programs

  • Mathematica
    z = 11; p[x_, n_] := x + (2 n - 1)/p[x, n - 1]; p[x_, 1] = 1;
    t = Table[Factor[p[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249100 array *)
    Flatten[CoefficientList[u, x]] (* A249100 sequence *)
    v = u /. x -> 1  (* A249101 *)
    u /. x -> 0  (* A235136 *)
    T[ n_Integer, k_Integer] := (T[n, k] = If[n<2, Boole[0==k], T[n-1, k-1] + (2*n-1)*T[n-2 ,k] ]); Join @@ Table[T[n, k], {n, 10}, {k, 0, n-1}] (* Michael Somos, Oct 27 2022 *)

Formula

T(n, k) = T(n-1, k-1) + (2*n-1)*T(n-2, k). - Michael Somos, Oct 27 2022