cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249119 Decimal expansion of Product_{k >= 0} 1+1/(2^(2^k)+1).

Original entry on oeis.org

1, 7, 0, 0, 7, 3, 5, 4, 9, 5, 2, 8, 6, 4, 0, 4, 8, 5, 1, 3, 0, 7, 3, 5, 7, 4, 3, 3, 9, 2, 2, 2, 3, 2, 6, 6, 3, 1, 8, 3, 1, 7, 2, 2, 1, 3, 9, 7, 4, 5, 6, 4, 6, 7, 6, 8, 4, 6, 0, 4, 6, 4, 5, 8, 4, 8, 2, 8, 6, 1, 8, 7, 8, 7, 4, 5, 4, 4, 1, 4, 2, 8, 9, 2, 4, 1, 9, 2, 7, 3, 1, 2, 5, 2, 2, 2, 7, 7, 4, 7, 2, 0, 8, 2, 0
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 21 2014

Keywords

Comments

This number is irrational.

Examples

			1.700735495286404851307357433922232663183172213974564676846046458482861...
		

References

  • Michal Křížek, Florian Luca and Lawrence Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer-Verlag, 2001, p. 110.

Crossrefs

Cf. A000215, A001317, A380373, A079559 (binary expansion).

Programs

  • Magma
    c:=[&*[1+1/(2^(2^k)+1): k in [0..8]]][1]; Reverse(Intseq(Floor(10^104*c)));
    
  • PARI
    prodinf(k=0, 1+1/(2^(2^k)+1)) \\ Michel Marcus, Oct 21 2014

Formula

Equals Sum_{k>=0} 1/A001317(k). - Amiram Eldar, Aug 28 2019
Equals Sum_{i>=0} A079559(i)/2^i. - Jwalin Bhatt, Feb 09 2025