cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249142 Let k be the difference between the smallest square >= n and n. Sequence gives difference between the smallest square >= k and k.

Original entry on oeis.org

0, 2, 0, 0, 0, 1, 2, 0, 0, 3, 4, 0, 1, 2, 0, 0, 1, 2, 3, 4, 0, 1, 2, 0, 0, 6, 0, 1, 2, 3, 4, 0, 1, 2, 0, 0, 4, 5, 6, 0, 1, 2, 3, 4, 0, 1, 2, 0, 0, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 0, 1, 2, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 0, 1, 2, 0, 0, 7, 8, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 0, 1, 2, 0, 0
Offset: 1

Views

Author

Valtteri Raiko, Oct 22 2014

Keywords

Comments

Equals A068527 applied to itself.

Examples

			For n = 13 the next biggest square is 16, thus k = 16 - 13 = 3 and for 3 the next biggest square is 4, thus a(14) = 3 - 2 = 1.
		

Crossrefs

Cf. A068527.

Programs

  • Magma
    [n - Ceiling(Sqrt(n))^2 + Ceiling(Sqrt(-n+Ceiling(Sqrt(n))^2))^2: n in [1..100]]; // Vincenzo Librandi, Oct 23 2014
  • Maple
    A068527:= n -> ceil(sqrt(n))^2 - n:
    map(A068527@@2, [$1..100]); # Robert Israel, Nov 02 2017
  • Mathematica
    Table[n - Ceiling[Sqrt[n]]^2 + Ceiling[Sqrt[-n + Ceiling[Sqrt[n]]^2]]^2, {n, 1, 100}]
  • PARI
    A068527(n)=if(issquare(n), 0, (sqrtint(n)+1)^2-n)
    a(n)=A068527(A068527(n)) \\ Charles R Greathouse IV, Oct 22 2014
    

Formula

a(n) = A068527(A068527(n)).
a(n) = n - ceiling(sqrt(n))^2 + ceiling(sqrt(-n+ceiling(sqrt(n))^2))^2.
a(n) < (64n)^(1/4). - Charles R Greathouse IV, Oct 22 2014

Extensions

Edited, old crossrefs entry moved to Comments, and first two formula lines interchanged by Wolfdieter Lang, Nov 10 2014