A249142 Let k be the difference between the smallest square >= n and n. Sequence gives difference between the smallest square >= k and k.
0, 2, 0, 0, 0, 1, 2, 0, 0, 3, 4, 0, 1, 2, 0, 0, 1, 2, 3, 4, 0, 1, 2, 0, 0, 6, 0, 1, 2, 3, 4, 0, 1, 2, 0, 0, 4, 5, 6, 0, 1, 2, 3, 4, 0, 1, 2, 0, 0, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 0, 1, 2, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 0, 1, 2, 0, 0, 7, 8, 0, 1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 4, 0, 1, 2, 0, 0
Offset: 1
Examples
For n = 13 the next biggest square is 16, thus k = 16 - 13 = 3 and for 3 the next biggest square is 4, thus a(14) = 3 - 2 = 1.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A068527.
Programs
-
Magma
[n - Ceiling(Sqrt(n))^2 + Ceiling(Sqrt(-n+Ceiling(Sqrt(n))^2))^2: n in [1..100]]; // Vincenzo Librandi, Oct 23 2014
-
Maple
A068527:= n -> ceil(sqrt(n))^2 - n: map(A068527@@2, [$1..100]); # Robert Israel, Nov 02 2017
-
Mathematica
Table[n - Ceiling[Sqrt[n]]^2 + Ceiling[Sqrt[-n + Ceiling[Sqrt[n]]^2]]^2, {n, 1, 100}]
-
PARI
A068527(n)=if(issquare(n), 0, (sqrtint(n)+1)^2-n) a(n)=A068527(A068527(n)) \\ Charles R Greathouse IV, Oct 22 2014
Formula
a(n) = n - ceiling(sqrt(n))^2 + ceiling(sqrt(-n+ceiling(sqrt(n))^2))^2.
a(n) < (64n)^(1/4). - Charles R Greathouse IV, Oct 22 2014
Extensions
Edited, old crossrefs entry moved to Comments, and first two formula lines interchanged by Wolfdieter Lang, Nov 10 2014
Comments