cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249151 Largest m such that m! divides the product of elements on row n of Pascal's triangle: a(n) = A055881(A001142(n)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 1, 2, 4, 10, 7, 12, 6, 4, 1, 16, 2, 18, 4, 6, 10, 22, 11, 4, 12, 2, 6, 28, 25, 30, 1, 10, 16, 6, 36, 36, 18, 12, 40, 40, 6, 42, 10, 23, 22, 46, 19, 6, 4, 16, 12, 52, 2, 10, 35, 18, 28, 58, 47, 60, 30, 63, 1, 12, 10, 66, 16, 22, 49, 70, 41, 72, 36, 4, 18, 10, 12, 78, 80, 2
Offset: 0

Views

Author

Antti Karttunen, Oct 25 2014

Keywords

Comments

A000225 gives the positions of ones.
A006093 seems to give all such k, that a(k) = k.

Examples

			              Binomial coeff.   Their product  Largest k!
                 A007318          A001142(n)   which divides
Row 0                1                    1        1!
Row 1              1   1                  1        1!
Row 2            1   2   1                2        2!
Row 3          1   3   3   1              9        1!
Row 4        1   4   6   4   1           96        4! (96 = 4*24)
Row 5      1   5  10  10   5   1       2500        2! (2500 = 1250*2)
Row 6    1   6  15  20  15   6   1   162000        6! (162000 = 225*720)
		

Crossrefs

One more than A249150.
Cf. A249423 (numbers k such that a(k) = k+1).
Cf. A249429 (numbers k such that a(k) > k).
Cf. A249433 (numbers k such that a(k) < k).
Cf. A249434 (numbers k such that a(k) >= k).
Cf. A249424 (numbers k such that a(k) = (k-1)/2).
Cf. A249428 (and the corresponding values, i.e. numbers n such that A249151(2n+1) = n).
Cf. A249425 (record positions).
Cf. A249427 (record values).

Programs

  • PARI
    A249151(n) = { my(uplim,padicvals,b); uplim = (n+3); padicvals = vector(uplim); for(k=0, n, b = binomial(n, k); for(i=1, uplim, padicvals[i] += valuation(b, prime(i)))); k = 1; while(k>0, for(i=1, uplim, if((padicvals[i] -= valuation(k, prime(i))) < 0, return(k-1))); k++); };
    \\ Alternative implementation:
    A001142(n) = prod(k=1, n, k^((k+k)-1-n));
    A055881(n) = { my(i); i=2; while((0 == (n%i)), n = n/i; i++); return(i-1); }
    A249151(n) = A055881(A001142(n));
    for(n=0, 4096, write("b249151.txt", n, " ", A249151(n)));
    
  • Python
    from itertools import count
    from collections import Counter
    from math import comb
    from sympy import factorint
    def A249151(n):
        p = sum((Counter(factorint(comb(n,i))) for i in range(n+1)),start=Counter())
        for m in count(1):
            f = Counter(factorint(m))
            if not f<=p:
                return m-1
            p -= f # Chai Wah Wu, Aug 19 2025
  • Scheme
    (define (A249151 n) (A055881 (A001142 n)))
    

Formula

a(n) = A055881(A001142(n)).